A REMARK ON THE KRULL DIMENSION

BY CHAN-BONG PARK

1. Introduction

Let A be a commutative local ring and \mathcal{C}_A the category of finite A-modules. Then $d: \mathcal{C}_A \to \mathbb{N}$ defined by $d(E)$, Krull dimension of E, satisfies the following properties:

1) $\dim(A/\mathfrak{m}) = 0$
2) If $0 \to E' \to E \to E'' \to 0$ is an exact sequence, then $d(E) = \max(d(E'), d(E''))$.
3) If $0 \to E \to E/aE \to 0$ where $a \in \mathfrak{m}$ is an exact sequence then $d(E) = -1 + d(E/aE)$.

A main purpose of this note is to show that the above three properties do characterize dimension, i.e., $d: \mathcal{C}_A \to \mathbb{N}$ with the above three properties is unique. For the sake of readers, we also give a proof of above properties for Krull dimension based on the notion of Hilbert-Samuel polynomial.

2. Definitions and preliminaries

Let A be a noetherian local ring with maximal ideal \mathfrak{m}, E a finite A-module, (E_n) a stable \mathfrak{m}-filtration of E. Let

$\text{gr}(A) = \bigoplus_{r=0}^{\infty} A/\mathfrak{m}^r$, $\text{gr}(E) = \bigoplus_{r=0}^{\infty} A/\mathfrak{m}^rE$, $\text{gr}_r(A) = \mathfrak{m}^r/\mathfrak{m}^{r+1}$,

then $\text{gr}_0(A) = A/\mathfrak{m}$ is a field and hence $\text{gr}(A)$ is a noetherian ring, and $\text{gr}(E)$ is a finite $\text{gr}(A)$-module. $\text{gr}_r(E) = \mathfrak{m}^rE/\mathfrak{m}^{r+1}E$ is a noetherian A-module annihilated by \mathfrak{m}.

If $\{x_1, x_2, \cdots, x_p\}$ generates \mathfrak{m}, the image \bar{x}_i of the $x_i \in \mathfrak{m}$ generate $\text{gr}(A)$ as an A/\mathfrak{m}-algebra and \bar{x}_i has degree 1.

Proposition 1. $P_E(t) = \sum_{r=0}^{\infty} C_r t^r$, where $C_r = [\mathfrak{m}^rE/\mathfrak{m}^{r+1}E : A/\mathfrak{m}]$ is of the form $f(t)/(1-t)$ for some $f(t) \in \mathbb{Z}[t]$.

Received October 1, 1980.
Proof. We shall prove by the induction on \(p \), the number of generators of \(\text{gr}(A) \) over \(A/\mathfrak{m} \). Let \(p = 0 \). Then \(\mathfrak{m}^n/\mathfrak{m}^{n+1} = 0 \) for all \(n > 0 \), so that \(\text{gr}(A) = A/\mathfrak{m} \) and \(\text{gr}(E) \) is a finitely generated \(A/\mathfrak{m} \)-vector space, and hence \(\mathfrak{m}^nE/\mathfrak{m}^{n+1}E = 0 \) for all \(n \gg 0 \). Thus \(P_E(t) \) is a polynomial.

Suppose \(p > 0 \) and the proposition true for \(p - 1 \). Multiplication by \(\alpha_p \) is an \(A \)-module homomorphism of \(\mathfrak{m}^nE/\mathfrak{m}^{n+1}E \) into \(\mathfrak{m}^{n+1}E/\mathfrak{m}^{n+2}E \) and hence it gives an exact sequence:

\[0 \rightarrow P_n/P_{n+1} \rightarrow \mathfrak{m}^nE/\mathfrak{m}^{n+1}E \rightarrow \mathfrak{m}^{n+1}E/\mathfrak{m}^{n+2}E \rightarrow Q_{n+1}/Q_{n+2} \rightarrow 0 \]

Let \(P = \bigoplus P_v/P_{v+1}, \ Q = \bigoplus Q_v/Q_{v+2} \). These are both finitely generated \(A \)-modules and both annihilated by \(\bar{x}_p \), hence they are \(A/\mathfrak{m} [\bar{x}_1, \bar{x}_2, \cdots, \bar{x}_p] \)-module. Applying an additive function to \(*1 \) we get

\[\lambda(P_n/P_{n+1}) = -\lambda(\mathfrak{m}^nE/\mathfrak{m}^{n+1}E) + \lambda(\mathfrak{m}E/\mathfrak{m}E) - \lambda(Q_{n+1}/Q_{n+2}) = 0. \]

Multiplying by \(\mathfrak{m}^{n+1} \) and summing with respect to \(n \) we get \((1-t)P_E(t) = P_0(t) - tP_P(t) + h(t) \), where \(h(t) \) is a polynomial. By the induction assumption \(P_0(t) \) and \(P_P(t) \) are rational function of the form \(g(t)/(1-t) \), and hence

\[(1-t)P_E(t) = P_0(t) - tP_P(t) + h(t) = f(t)/(1-t)^p. \]

Therefore, \(P_E(t) = f(t)/(1-t)^{p+1} \).

Corollary. For all \(n \gg 0 \), \(\lambda(\mathfrak{m}^nE/\mathfrak{m}^{n+1}E) \) is a polynomial in \(n \) of degree \(p - 1 \).

Proof. By the above proposition \(\lambda(\mathfrak{m}^nE/\mathfrak{m}^{n+1}E) \) is the coefficient of \(t^n \) in \(f(t)/(1-t)^p \). Suppose \(f(1) \neq 0 \) and \(f(t) = \sum_{k=0}^{N} a_k t^k \). Since

\[(1-t)^{-p} = \sum_{k=0}^{N} (\binom{n+k-1}{k}) t^k, \quad \lambda(\mathfrak{m}^nE/\mathfrak{m}^{n+1}E) = \sum_{k=0}^{N} a_k (\binom{n+k-1}{k}) \text{ for all } n \geq N. \]

Therefore \(\mathfrak{d}(n) = \lambda(\mathfrak{m}^nE/\mathfrak{m}^{n+1}E) \) is a polynomial in \(n \) of degree \(\leq p - 1 \). It follows that the function

\[g_E(n) = \mathfrak{d}(n) = \lambda(E/\mathfrak{m}E) = \sum_{i=0}^{n-1} \lambda(\mathfrak{m}^iE/m^{i+1}E) \]

is also a polynomial in \(n \) of degree \(\leq p \) for all \(n \gg 0 \). This \(g_E(n) \) is the Hilbert–Samuel polynomial in \(n \) of \(E \) with respect to \(\mathfrak{m} \). We shall let \(\deg g_E(n) = d(E) \).

Remark. Define \(\mathfrak{d}(E) \) to be the order of the pole at \(1 \) in \(P_E(t) \). As we know easily \(\mathfrak{d}(E) = d(E) - 1 \). In fact,

\[\lambda(E/\mathfrak{m}^{n+1}E) = \lambda(E/\mathfrak{m}E) + (\mathfrak{m}E/\mathfrak{m}^2E) + \cdots + (\mathfrak{m}^nE/\mathfrak{m}^{n+1}E). \]

Put \(P_E(t) = \sum_{v=0}^{\infty} C_v t^v \), where \(C_v = \lambda(\mathfrak{m}^vE/\mathfrak{m}^{v+1}E) \). Then since \(C_v = \lambda_v - \lambda_{v-1} \), where \(\lambda_v = C_1 + C_2 + \cdots + C_v \), we have
A remark on the Krull dimension

\[P_E(t) = \sum_{\nu=0}^{m} (\lambda(E/\mathfrak{m}^{\nu+1}E) - \lambda(E/\mathfrak{m}^{\nu}E)) t^\nu \]

\[= \sum \lambda(E/\mathfrak{m}^{\nu+1}E) t^\nu - (\sum (\lambda(E/\mathfrak{m}^{\nu}E) t^{\nu-1}) t = (1-t) \sum \lambda(E/\mathfrak{m}^{\nu+1}E) t^\nu. \]

Therefore,

\[\sum \lambda(E/\mathfrak{m}^{\nu+1}E) t^\nu = \frac{1}{1-t} P_E(t) = \frac{1}{1-t} \sum \lambda(E/\mathfrak{m}^{\nu}E) t^\nu. \]

As we expect, \(\delta(E) = d(E) - 1. \)

PROPOSITION 2. Let \(A, \mathfrak{m}, E \) be as in Proposition 1 and \(\mathcal{O}_A \) the category of finite \(A \)-modules. For any objects \(E, E', E'' \in \mathcal{O}_A \), if

\[0 \to E' \to E \to E'' \to 0 \]

is an exact sequence of finite \(A \)-module, then \(d(E) = \max (d(E'), d(E'')) \)

Proof. From given exact sequence we know

\[0 \to E' \oplus \mathfrak{m}^n E'/\mathfrak{m}^n E \to E'/\mathfrak{m}^n E \to E'/\mathfrak{m}^n E'' \to 0 \]

is an exact sequence of finite \(A \)-module, and so \(E'/\mathfrak{m}^n E = E''/\mathfrak{m}^n E'' \).

Since

\[\lambda(E''/\mathfrak{m}^n E'') = \lambda(E'/\mathfrak{m}^n E) \leq \lambda(E/\mathfrak{m}^n E), \]

we get \(d(E'') \leq d(E) \). Furthermore,

\[\lambda_a^E(n) - \lambda_a^{E'}(n) = \lambda(E/\mathfrak{m}^n E) - \lambda(E'/\mathfrak{m}^n E') \]

\[= \lambda(E'/\mathfrak{m}^n E') - \lambda(E'/\mathfrak{m}^n E) = \lambda(E'/\mathfrak{m}^n E'/\mathfrak{m}^n E) \]

\[= \lambda(E'/\mathfrak{m}^n \cap \mathfrak{m}^n E), \]

and there exists \(r > 0 \) such that \(E'/\mathfrak{m}^n E \subset \mathfrak{m}^{n-r} E' \) for all \(n > r \) by Artin-Rees. Thus

\[\lambda(E'/\mathfrak{m}^n E') \geq \lambda(E'/\mathfrak{m}^n \cap \mathfrak{m}^n E) \geq \lambda(E'/\mathfrak{m}^{n-r} E'). \]

This means that \(\lambda_a^E(n) - \lambda_a^{E'}(n) \) and \(\lambda_a^{E'}(n) \) have the same degree and the same leading term.

PROPOSITION 3. Let \(A, \mathfrak{m}, E \) be as in proposition 1, and \(a \in \mathfrak{m} \) non-zero divisor on \(E \). Then \(d(E) - 1 = d(E/aE) \).

Proof. From the given condition, we get an exact sequence:

\[0 \to aE \to E \to E/aE \to 0 \]

and hence

\[0 \to aE + \mathfrak{m}^n E/\mathfrak{m}^n E \to E/\mathfrak{m}^n E \to E/aE/\mathfrak{m}^n (E/aE) \to 0 \]

and then

\[\lambda_a^{E/aE}(n) = \lambda(E/aE + \mathfrak{m}^n E) = \lambda(E/\mathfrak{m}^n E) - \lambda(aE + \mathfrak{m}^n E/\mathfrak{m}^n E), \]

\[aE + \mathfrak{m}^n E/\mathfrak{m}^n E \cong aE/aE \cap \mathfrak{m}^n E \cong E/(\mathfrak{m}^n E:a) \text{ and } \mathfrak{m}^{n-1} E \subseteq (\mathfrak{m}^n E:a). \]

Hence

\[\lambda_a^{E/aE}(n) \geq (E/\mathfrak{m}^n E) - \lambda(E/\mathfrak{m}^{n-1} E) = \lambda_a^E(n) - \lambda_a^E(n-1). \]
It follows that $d(E/aE) \geq d(E) - 1$. On the other hand, $aE \cong E$ as A-modules by the hypothesis on a. We have an exact sequence:

$$0 \to aE/aE \to E/M^nE \to E/aE \to 0.$$

Hence

$$\lambda(aE/aE \cap M^nE) = \lambda(E/M^nE) + \lambda(E/aE/M^n(E/aE)) = 0$$

for all $n \geq 0$. By the Artin–Rees, $aE \cap M^nE$ is a stable M-filtration of E.

Since $aE \cong E$, $\lambda(E/aE \cap M^nE)$ and $\lambda_n(a)$ have the same leading term because the degree and leading coefficient of Hilbert–Samuel polynomial depend only on E and m, not on the filtration chosen.

Therefore $d(E/aE) \leq d(E) - 1$.

3. Main theorem

Theorem. Let A be a local noetherian ring with maximal ideal m, E a finite A-module, $gr(E) = \bigoplus_{p=0}^{\infty} M^nE/M^{n+1}E$, $P_E(t) = \sum_{p=0}^{\infty} C_p t^p$, where $C_p = [M^nE/M^{n+1}E: A/m]$, $\alpha(E)$ the order of the pole at 1 in $P_E(t)$ and Θ_A the category of finite A-modules.

Define $E \to \lambda(E) \in N$ non negative, then following hold:

1. $\lambda^*E = 0$ for some $n > 0$ \implies (1') $\alpha(E) = \alpha(A/m) = 0$
2. $0 \to E' \to E \to E'' \to 0$ exact and $\alpha(E) = \max(\alpha(E'), \alpha(E''))$
3. $0 \to aE \to E \to E/aE \to 0$ exact, where $a \in M$

$$\implies \alpha(E/aE) = \alpha(E) - 1.$$

Conversely, this map is uniquely determined by the above conditions.

Proof. (1) $M^nE = 0$ for some $n > 0$ implies $M(M^nE) = 0$, and hence $M^{n+1}E = 0$.

Since $M^{n+k}E = 0$ for all $k \geq 0$, $M^{n+k}/M^{n+k+1}E = 0$.

Thus $C_{n+1} = \dim_{A/m}(M^{n+1}E/M^{n+2}E) = 0$. Therefore, $P_E(t) = \sum_{p=0}^{\infty} C_p t^p = \sum_{p=0}^{\infty} C_p t^p$

because $C_p = 0$ if $p > n$, so the order of the pole is zero, i.e., $\alpha(E) = 0$.

(1) \iff (1') From the given condition, we get a chain $E \supset E_1 \supset \cdots \supset E_r = 0$ of submodules such that $E_i/E_{i+1} = A/P_i$ by J.P. Serre.

Since $P_i \supset M \implies P_i \supset M$, $P_i = M$. Hence $\alpha(E) = \alpha(A/P) = 0$.

(2) & (3) follows from Proposition 2, 3 and Remark.

Conversely, by J.P. Serre, there exists a chain such that $E = E_0 \supset E_1 \supset \cdots \supset E_r = 0$, where $E_i/E_{i+1} = A/P_i$ for some i.

From

$$0 \to E_1 \to E \oplus E_1 \to 0,$$

$$0 \to E_2 \to E_1 \to E_1/2E_2 \to 0,$$

$$\cdots$$
we know
\[d(E) = \max \{ d(E/E_1), \ldots, d(E/E_r) \} \]
\[= \max \{ d(A/P_1), \ldots, d(A/P_r) \}. \]
If \(d(A/P) = \dim(A/P) \), then \(d(E) = \dim(E) \). Thus if \(d(E) \neq \dim(E) \) for some module \(E \) then \(d(A/P) \neq \dim(A/P) \) for some prime ideal \(P \).

Assume that \(d(E) \neq \dim(E) \), and then choose a maximal one among all prime ideals \(P \) for which \(d(A/P) \neq \dim(A/P) \).

Let \(P \) be a maximal one.

(a) \(P \neq \% \) because if \(P = \% \) then \(d(A/P) = 0 \) by (1') whereas \(\dim(A/\%) = 0 \).

(b) Since \(P \subseteq \% \) we can pick \(a \in \% - P \). The multiplication by \(a \) in \(A/P \) is one-one, i.e., \(0 \to A/P \to A/P \to A/(P+aA) \to 0 \) is exact. Then, by (3), we have
\[d(A/P+aA) = d(A/P) - 1, \text{ i.e., } d(A/P) = 1 + d(A/P+aA). \]
However choose \(A/P+aA = E \supseteq E_1 \supseteq \ldots \supseteq E_r = 0 \) such that \(E_i/E_{i+1} \cong A/P_i \), then \(P_i \supseteq P+aA \supseteq P \). Because \(P \) was a maximal amongst \(d(A/P) \neq \dim(A/P) \) we must have \(d(A/P_i) = \dim(A/P_i) \) for all \(i \). Therefore,
\[\max(d(E/E_1), d(E/E_2), \ldots) = d(A/P+aA) \]
\[= \max(d(A/P_1), d(A/P_2), d(A/P_3), \ldots) = \dim(A/P+aA). \]
Hence
\[d(A/P) = 1 + d(A/P+aA) = 1 + d(A/P+aA) = \dim(A/P), \]
which is a contradiction.

Corollary Let \(A \to B \) be a local map of noethorian local rings, and \(E \) a finite \(B \)-module which is \(A \)-flat. Then for any finite \(A \)-module \(M \) we have
\[\dim_A(M) = \dim_B(M \otimes_A E) - \dim_B(E/\%E). \]

Proof. Let \(\Theta_A \to N \), where \(\delta(M) = \dim_B(M \otimes_A E) - \dim_B(E/\%E) \). Then
(i) \(\delta(A/\%) = \dim_B(A \otimes E) - \dim_B(E/\%E) = \dim_B(E/\%E) - \dim_B(E/\%E) = 0. \)
(ii) \(0 \to M' \to M \to M'' \to 0 \) is exact and
\[0 \to M' \otimes_A E \to M \otimes_A E \to M'' \otimes_A E \to 0 \] is exact since \(E \) is \(A \)-flat.
So \(\dim_B(M \otimes_A E) = \max(\dim_B(M' \otimes A E), \dim_B(M'' \otimes A E)). \) Therefore,
\[\delta(M) = \max(\delta(M'), \delta(M'')). \]
(iii) \(0 \to M \to M \to M/aM \to 0, \) where \(a \in \% \), is exact.
\[\Rightarrow 0 \to M \otimes_A E \to M \otimes_A E \to M/aM \otimes_A E \to 0 \] is exact.
\[\Rightarrow 0 \to M \otimes_A E \to M \otimes_A E \to M \otimes_A E/a(M \otimes_A E) \to 0 \] is exact.
\[\Rightarrow \dim_B(M \otimes_A E) = 1 + \dim_B(M \otimes_A E/a(M \otimes_A E)). \]
So \(\delta(M) = 1 + (M/aM). \)
By uniqueness,
\[\dim_A(M) = \dim_B(M \otimes_A E) - \dim_B(E/\%E). \]
References

Wonkwang University