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1. Introduction

A fairly general boundary integral equation
(BIE) formulation for elastic plate flexure hag
been given earlier by Stern(l) in terms of
a pair of coupled singular integral equations
involving the natural variables of deflection,
normal slope, bending moment, and equivalent
shear on the plate boundary. While this form-
ulation allows for discontinuities in the boun-
dary variables as might naturally occur at a
corner of the plate boundary, or where the
boundary support conditions undergo a sudden
change in type as from clamped to free, the
class of admissible problems is still required
to have bounded moment and shear resultants
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which produce bounded stresses everywhere
in the plate. However, there are important
classes of problems for which the moment and
shear resultants as calculated within the fra-
mework of linear theory are not bounded, for
example at sharp notches or cracks as shown
by Williams(2). At such singular points a
knowledge of the so-called stress intensity
factors governing the growth rate of the stre-
sses has proven useful in linear fracture
mechanics.

In this chapter we indicate how to adapt
the BIE formulation so that the stress intensity
factors also become natural variables to be de-
termined by the solution of coupled singular
integral equations. While the basic method
follows closely in spirit the ideas outlined for
plane elastostatic calculations by Barone and
Robinson(3) and by Stern(4), the complexity

of the problem is magnified by the higher-
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order equations of plate theory, and some
new difficulties not present in the plane elas-
tostatic case arise.

2. Boundary Integral Representation

We first briefly summarize the development
of the BIE representation in Stern(1). The
plate is modeled by a bounded regionQ with
total boundary 8Q containing a finite number
of corner points /,--+/; as indicated in Fig.1
where other relevant notation is shown. The
plate deflection w is governed by the differential
equation

Vow=q/D in Q €))

N

Fig. 1 Coordinates and notation,

where ¢ is the transverse load on the plate,
and suitable boundary conditions, left unspec-
ified at the moment, are imposed on Q. Also
D=FEn3/12(1—v?) denotes the flexural rigidity
of the plate and V* is the iterated Laplacian

For u any other sufficiently smooth function
on , interpretable as a possible deflection
for suitable loading and support conditions, we
have a natural reciprocal work identity in the
form

[ Vaow—M.00- 2 2y
T oy ds @
+5 [ 1Mo 1w~ M. @) u] = D
Sa uViw—wVu)da

The notation and development was detailed in

Stern(1); brlefly Vn(.)’ Mn(')y _g;;_ are

the equivalent shear, bending moment and
normal slope on the boundary 2Q, and [M.(-)].
is the discontinuity jump in twisting moment
(interpertable as a concentrated force reaction)
at the corner ,,-

Now let P ¢ Q be an interior point of the
plate (the origin of coordinates in Fig.1) and

introduce the special “singluar solution”

w(P)=

le D 7oy &)

with N, V, M and T the corresponding normal
slope, equivalent shear, bending moment and
twisting moment on 8Q. Deleting a small
circular region centered at P, and applying the
identity Eq.(2) to Q so modified, produces two
contributions to the boundary integral. The
first integral is still over the entire boundary
0Q just as in Eq. (2). The second however is
over the small circle surrounding P. With the
particular choice of the function W defined in
Eq. (3) for the auxiliary functionn #, this last
integral may be evaluated in the limit as the
circle surrounding P shrinks to P.

This produces, from Eq. (2), the representation

wlo—{, [ Vo222 1 N,
—WVn(w)]ds
~2 1701 1IW], + g Wda

@

where we have replaced DV4w with the dist-
ributed load intensity ¢. Since only the functions
derived from W depend on the point P, Eq. (4)
may be differentiated (in the interior of Q)
to whatever extent is permitted by the regul-
arity of the load ¢. Thus the plate deflection
and quantities derivable from it are determined
by a knowledge of the deflection, normal slope,
bending moment, and equivalent shear on the
plate boundary, and the discontinuity jumps in
the twisting moment(concentrated support for-

ces) which might occur at corners. These
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quantities in turn may be determined using
the following considerations.

The same type of argument used in obtaining
Eq. (4) is repeated for the point P on the
boundary 2Q. Now only a semi-circular region
is deleted from Q and two new corners are
introduced into the boundary of the modified
region as indicated in Fig.2. In addition to the
special singular function W defined in Eq.(2),
we define another

W,=—27+D—rlnrcos(0+7’) (5)
with 7 the angle from the outer normal at P
to the line =0, and N,, V,, M, T, the
corresponding normal slope, equivalent shear,
bending moment and twisting moment. This
leads to the pair of coupled boundary integral
representations

Lw| +§ [vw—a 92 nag,

— WV, |ds
+ [T T~ 1MW ], = gWda
®
—g%_ P+§aa[v(w_wlp) ~M; fjby{z}

+ N M. () — W, V.(w) ]ds
+ 51T G—w| )~V ],
={,aW.da ™

where denotes a Cauchy principal value
integral. If the point P should lie at a corner
of the plate boundary additional considerations
are required; these are developed in detail
in Stern(1). Finally, two boundary conditions
involving the boundary variables are available
from the particualr nature of the supports or
lack of them; for example, on a clamped
portion of the boundary the deflection w and
normal slope Z,—Z} are required to vanish,

whereas if the boundary is free of support
then the bending moment M(w) and equivalent

shear V.(w) are zero. The boundary conditi-
ons, together with Eqs. (6) and (7), are
sufficient to determine the boundary variables
everywhere on 9.

Fig. 2 Origin on the boundary,
3. Singularity Equations

The equations obtained in the preceeding
section are based on the presumption that the
moment and shear resultants remain bounded
near the origin point P. We now consider how
to obtain appropriate integral equations for
other cases of interest at boundary points
where the stresses bcome unbounded. For bre-
vity we outline the major ideas only for the
special case of a through crack with free
edges.

Following the ideas of Williams(2), we infer
the asymptotic singular behavior of the plate
deflection at the base of a crack from the
nontrivial solutions of the homogeneous boun-
dary value problem corresponding to an unlo-
aded plate containing a straight semi-infinite
crack with free edges:

Véw(r, 0)=0 for >0, 0<H<2x

M.(w)=V.(w)=0 for 620( 2377") ®
Myw)=Va(w)=0 for 0=2x(p=2)

A separation of variables solution results in
an eigenvalue problem; with
w(r, 6; )=r**1[h® sin(A+1)§+p®
cos{(A+ 18+ 6 Psin(A—1)0+ b, “Pcos(A—1)8]
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€)]

the eigenvalues are given by
sin 2zA=0 am
We reject negative values of 2 as leading to
unbounded strain energy, while for 2=0, 1=1
or 2>2 the stresses remain bounded. The
acceptable eigensolutions with singular stresses
thus correspond to the eigenvalues 2=1/2 and
A=3/2 which leads to the general singular

solution

3(1—v)
- sin Z:I

an

w(r, O =rde {b [sm -—+

+ b, [cos 5 + %%—COS —2—]}

+r5’2{ l:sm 50 5(91_—”) = ¢ gin g}
+cz[cos—2— + 5§15§> cos —2—}}
Equation(11) defines the asymptotic singular
behavior of the plate deflection near the base
of a crack in terms of the four parameters b,,
by, ¢y, ¢o. (This result is of course well known,
for example Williams(5)

The idea now is to substitute for # in the
reciprocal work identity Eq. (2) particular
biharmonic functions with the right order of
singular behavior at the base of the crack, so
that when the argument leading to the repr-
esentations Egs.(6) and(7) is repeated for P
at the crack tip we obtain representations for
by, b, ¢y, Ca.
also solutions of the boundary value problem

Furthermore, if these functions are

Eq. (8) then no contribution to the integrals
will result from the crack flanks.

Without attempting to furnish details we
merely list main results. The particular solu-
tion of Eq. (8) required(called the compleme-
ntary solution) is of the form

u(r, 6)=r"% B, sin i+ et sin 32
2 5+3v 2

—g—+ ;'-—i— cos —321:[} o))

+7"“2{01|:sin —g—+ 31;52 sin —520—]

+B, [cos

+CZ[—COS%+ é___: cos -%0— ]}

where B, B;, C,, C; are arbitrary constants. By
deleting a small circular region surrounding
the crack tip at P as indicated in Fig. 3 we
add to Eq. (2) a contour integral(on C.) and
two corner jump terms (at /* and /-) which
are evaluated in the limit as ¢—0 to produce,

after routine but tedious calculation,
1 du
Jar=lim{{, [ VeGow=20.0) G+

M. (w)—u V,.(w)]ds

+{[ M. 1— 1> 1 |,

+[ 1Mo 1M1 |}
_ 240—»)@B+w)xD
ST TGy Lot Bebe]

1200 —») (3+v)7D
O—»)(G+3)

[Cic1+Cac]
13)
By suitable choice of the arbitrary constants
B, B,,C,,C, in the complementary solution
Eq. (12) we can obtain representations analo-
gous to Eqgs. (6) and (7) for the parameters
by, by Cy, Ca.
meaningful parameters might be introduced in
place of these; for example a symmetric mo-
ment intensity factor K, which governs the
rate of growth of the bending moment:

1 3DA—») B+
Klm_h,r}}) r“zM,,(w)‘ b b

Alternatively, more physically

?;:n/Z) (14)
An antisymmetric moment intensity factor
may also be defined and satisfies

KO =lim 7172 M, (w) —_3DA-»d+w b
r=0

54-3v 2
0=;r
(g=x/2)
as)
Then, for example, if we take
543 '
Bi=—=>0, B,=C,=C,=0 ae)

in Eq.(12) (denoting this special function #;)
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we find Eq.(13) reduces to J.,=K,* and the
representation becomes

K@y j;aa[ Valu)w—M(uy)

—%’ +% M.(w)—u, Vn(w)]ds
+3 | [M e Yo— (Ml | = DS uiqda
an

with similar equations for K,?, ¢, and ¢,

Fig. 3 Integratinon near crack tip,
4. Numerical Implementation

The incorporation of the additional singula-
rity intensity variables in the numerical BIE
scheme described in Stern (1) involves several
new considerations, Briefly the original scheme
consists of discretizing the boundary by the
introduction of a finite number of nodal points,
care being taken to place a nodal point at
corners and other exceptional points. The
primary variables are then interpolated between
nodal points which reduces the problem to the
determination of nodal values of each of the
four primary variables(deflection, normal slope,
bending moment and equivalent shear) at the
“regular nodes”, with corners requiring some
added considerations as detailed in Stern (1).
We have generally at each node two boundary
conditions to be imposed as well as the pair
of integral equations (6) and (7) which are
easily discretized in terms of the nodal varia-
bles by any convenient quadrature rule applied
to the intervals between adjacent nodes. The

solution of this system of linear equations
(including additional corner variables and equ-
ations) then completes the process.

Now we have introduced singularity intensity
factors as additional unknown variables, and
with each an additional integral equation such
as Eq. (17) is also furnished so that the system
of equations is still determinate. However,
some as yet untreated questions arise in the
limiting process leading to the integral equations
for origin at the singularity.

The evaluation of various limits in obtaining
Egs. (6) and (7) was accomplished with the
presumption that the deflection function beha-
ved smoothly (bounded third derivatives) near
the boundary of the plate. This of course is
not the case near a singular point of the type
under consideration. It is not much more diff-
icult to verify these limits even in the singular
case if one notes the form of the asymptotic
behavior of the plate deflection near the sing-
ularity, for example Eq. (11) at the base of a
through crack.

A similar question arises in deriving repres-
entations such as Eq. (17) since the deflection
and rotation of the plate at the crack tip were
(tacitly) assumed to be zero. Again it can be
verified by direct calculation(as well as by an
energy argument) that the singularity intensity
equations are unaltered by any superposd rigid
body displacement of the plate.

Finally, the boundary segments adjacent to
a singular node should receive special treat-
ment since the eigensolutions furnish additional
information concerning the behavior of the
primary variables. For example consider "the
segment from the crack tip to the adjacent node
on the crack edge a distance d away. Normally
we would interpolate the displacement on this
interval linearly writing

w(r) =wo+(w,—w)r/d as)



A Boundary Integral Approximation for the Stress Intensity Factors...... 287

where w, is the deflection at the crack tip node
and w, is at the adjacent node. However, from
Eq. (11), with whatever rigid body displace-
ment of the plate is needed at the crack tip, the
deflection along this segment must be of the
form
w() =w,+w, v+ pré'?--qr’2 4+ remainder
19
where w,’ is the slope along the crack edge at
the tip, with a corresponding representation
similar to Eq. (7), and p, g are particular
linear combinations of the intensity parameters
K, K, c,,c.
roximated to the order of #? so that the defle-
ction is continuous at the adjacent node yielding
the interpolation
W) =wo+w,'r +prs'2-qrs'?
+{wi—wotw,' d+pd¥2+9d¥%) (v/d)E  (20)
Similar results are obtained to interpolate the

The remainder termm may be app-

other variables.

As an example of the entire procedure con-
sider the symmetric bending of a centrally
cracked square plate as illustrated in Fig. 4.
Symmetric considerations permit us to analyze
only one quarter of the plate(the second qua-
drant, for example which is isolated in Fig.5.
Boundary conditions are also shown in Fig.5.
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Fig. 4 Symmetric bending of a centrally cracked
square plate,
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Fig. 5 Nodal dlstrxbutlon and boundary conditions
for one quarter of the plate.

Results for the symmetric moment intensity
factor K, are shown in Table 1. for five
ratios of a/L ranging from. 5 to. 1. An eight
node mesh on every side was used in all five
cases. The results are nondimensionalized using
the solution for an infinite plate (a/L-—0)
obtained by Sih, et al (6). These nondimens-
ional intensity factors for a square plate are
compared with those of Wilson’s finite element
solution(7) for an infinite strip of finite width
with symmetric uniform bending. As indicated
in Table 1. there is reasonable agreement but
the BIE solutions exhibit rather poor behavior
over the range of crack size. This may be due
to inherent poor conditioning of the BIE equa-
tions and the delicate nature of the CPV
evaluations.

While the numerical results appear to be
generally correct, they are far from satisfac-
tory. In the numerical solution there were indi-
cations that the system of equations was poorly
conditioned. It wasalso found that the results
were sensitive to the form of interpolation used
on the elements adjacent to the crack tip and
in the CPV evaluations. Further study is needed
to identfy and correct, or at least to minimize
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the effects of the major error mechanisms.
Numerical experiments with different geometr-
ies, mesh patterns and interpolation forms
could be useful.

Additional areas also merit investigation. The
reatment of curved boundaries should be inv-
estigated to determine whether significant errors
are introduced by crude approximation (say
piecewise linear) of its shape. In principle, the
shape of the boundary may be treated as acc-
urately as desired, but with a significant incr-
ease in computation cost. Another area of
investigation which might prove fruitful is
the possible gain in accuracy for a given mesh
using a smoother than piecewise linear repres-
entation of the boundary variables, for example
cubic splines. There are no theoretcal analyses

presently available to suggest how the accuracy, .

of the solution depends on the smoothness of
the boundary approximations, so numerical
experiments will probably be the major inves-
tigative tool here as well.

Table 1 Nondimensional symmetric moment
intensity factors,

a/L | 1| .23 .4a]s
K, /K~ (BIE) [1.0130 1.04801.0578'1. 101111. 2117
K, /K= (FEM) [(1.006 (1.024 {1.058 tl. 105 [1.181
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