1. It is well known that the derived normal ring of a noetherian integral domain is a Krull domain, which is a theorem of Mori-Nagata. J. Nishimura proved the theorem using properties of a complete local ring ([5]) and J. Querre proved the same theorem without using either completion or properties of a complete local ring ([7]). In this paper we obtain some properties of an ideal transform and the derived normal ring of a noetherian integral domain, which give another proof of the theorem.

2. In this paper all rings are commutative with identity and a local ring \((A, m)\) means a noetherian commutative ring \(A\) with only one maximal ideal \(m\). We denote the Krull dimension of a ring \(A\) by \(\dim A\).

Proposition 1. ([3], (33.2)) Let \(A\) be a noetherian integral domain with field of quotients \(K\), Let \(L\) be a finite algebraic extension of \(K\), and let \(B\) be a ring between \(A\) and \(L\). If \(\dim A=1\), then \(B\) is noetherian with \(\dim B \leq 1\) and for any non-zero element \(a\) in \(A\), \(B/aB\) is a finite \(A\)-module.

Proof. If \(\dim A=1\), it is well-known Krull-Akizuki's theorem and so we omit the proof.

Let \(I\) be an ideal of a ring \(A\), and let \(Q(A)\) be the total quotient ring of \(A\). \(A(I) = \{x \in Q(A) : xI^n \subseteq A\text{ for some natural number }n\}\) is called the ideal transform of \(A\) with respect to \(I\). We denote the derived normal ring of an integral domain \(A\) by \(\overline{A}\), which is the integral closure of \(A\) in its field of quotients.

Proposition 2. Let \((A, m)\) be a local domain and \(\dim A \geq 2\). Then the following conditions are equivalent: (1) \(A(m) = A\), (2) \(A(m) \cap \overline{A} = A\).

Proof. Since \(\dim A \geq 2\), we have \(xm \subseteq m\) for \(x \in A : m\), and it follows that \(A(m) \neq A\) implies \(A(m) \cap \overline{A} \neq A\).

Proposition 3. Let \((A, m)\) be a local domain and \(\dim A = n \geq 2\). Suppose for any noetherian integral domain \(B\) with \(\dim B < n\), \(B\) is a Krull domain.
Then the following conditions are equivalent:
(1) \(A(m) \subseteq \overline{A} \), (2) \(\overline{A} \) has no maximal ideal of height 1.

Proof. In view of Proposition (1.2) in \([6]\) it follows that (2) implies (1). Now we shall prove (1) implies (2). By definition \(A(m) = \bigcap_{i=1}^{r} A_{f_i} \), where \(m = f_1 A + \cdots + f_r A \). Since \(\dim A_{f_i} < \dim A = n \), by hypothesis \(A_{f_i}, i = 1, \ldots, r \), is a Krull domain. Hence \(\overline{A} = \overline{A(m)} = \bigcap_{i=1}^{r} \overline{A_{f_i}} \) is a Krull domain.

Now suppose there is a maximal ideal \(\mathfrak{m} \) of \(\overline{A} \) with \(\text{ht} \mathfrak{m} = 1 \). Then for non-zero element \(a \) in \(\mathfrak{m} \), \(a \overline{A} = \mathfrak{m}_a \overline{A} \cap \overline{A_{f_1}} \cap \cdots \cap \overline{A_{f_r}} \). Since \(\mathfrak{m}_a + I = \overline{A} \) with \(I = \overline{f_2(e_2)} \cap \cdots \cap \overline{f_r(e_r)} \), we have \(b + c = 1 \) for some \(b \in \mathfrak{m}_a \) and \(c \in I \).

Suppose there exist two distinct maximal ideals \(\mathfrak{m} \) and \(\mathfrak{n} \) in \(\overline{A} \) such that \(\mathfrak{m}' = \mathfrak{m} \cap A[b] = \mathfrak{n} \cap A[b] \). Then, as \(I \subseteq \mathfrak{n} \), \(c \in \mathfrak{n} \) and \(b \in \mathfrak{m} \). On the other hand \(b \in \mathfrak{m}_a \cap A[b] \subseteq \mathfrak{n} \), which is a contradiction. Hence \(\mathfrak{m} \) is the only one maximal ideal of \(\overline{A} \) which lies over \(\mathfrak{m}' \).

Let \(A_1 = A[b] \), \(\text{rad} A_1 = \mathfrak{m} \), and \(\mathfrak{m}' = \mathfrak{m} \cap A_1 \). Then, since \(A(m) \) is noetherian \([1]\), \(A_1(\mathfrak{m}) \) is a finite \(A(m) \)-module, and \(A_1(\mathfrak{m}) \subseteq \overline{A(m)} = \overline{A} = A_1 \). Hence \(\overline{A} \) is a Krull domain. Therefore \(\overline{A} \) has no maximal ideal of height 1.

Proposition 4. Let \((A, m)\) be a local domain and \(B = A(m) \cap \overline{A} \). Then the set of maximal ideals of \(A \) with height 1 and the set of maximal ideals of \(B \) with height 1 are in one to one correspondence.

Proof. \((B, n_1, \ldots, n_r)\) is a semi-local domain with Jacobson radical \(n = n_1 \cap \cdots \cap n_r \) \([1]\). Suppose that \(n_1, \ldots, n_\alpha \) are maximal ideals of height 1 and that \(n_{\alpha+1}, \ldots, n_r \) are maximal ideals of height >1. Then \(B(n) = \bigcap_{j=\alpha}^{r} B_{n_j} = B_{n_j} \), where \(T = B - \bigcup_{j=\alpha}^{r} n_j \). Since \(B(n) \cap \overline{B} = A(m) \cap \overline{A} = B, B_{n_j} = (B(n) \cap \overline{B})_{n_j} = B_{n_j} \cap \overline{B}_n \) for \(j > \alpha \). Hence by Proposition 2, \(B_{n_j} = B_{n_j} \cap \overline{B}_n \) for \(j > \alpha \) and \(B_{n_\alpha} = B \cap B_{n_\alpha} \). Thus by Proposition 3, \(\overline{B}_T \) has no maximal ideal of height 1. Therefore if \(\mathfrak{m} \) is a maximal ideal of \(\overline{A} \) with \(\text{ht} \mathfrak{m} = 1 \) and if \(n = \mathfrak{m} \cap B \), then \(\text{ht} n = 1 \).

Now let \(S_i = B - n_i \) for \(i \leq \alpha \). Then \(B_{S_i} = (A(m) \cap \overline{A})_{S_i} = A(m)_{S_i} \cap \overline{A} = A_{S_i} \). Hence \(\mathfrak{m} = n_i B_{S_i} \cap \overline{A} \) is the only maximal ideal of \(\overline{A} \) which lies over \(n_i \).

Proposition 5. Let \((A, m)\) be a local domain with \(\dim A = n \geq 2 \). Suppose that \(\overline{A} \) is a Krull domain for any noetherian integral domain \(R \) of dimension <\(n \). Then \(\overline{A} \) is a Krull domain.

Proof. Let \(B = A(m) \cap \overline{A} \). Then \((B, n_1, \ldots, n_r)\) is a semi-local domain. Let \(n_i, 1 \leq i \leq \alpha \), be maximal ideals of height 1, and let \(n_j, j > \alpha \), be maximal
ideals of height>1. Then $E = (\bigcap_{i=1}^{\alpha} B_{n_i}) \cap (\bigcap_{j=\alpha+1}^{r} B_{n_j})$, where B_{n_i}, $1 \leq i \leq \alpha$, is a discrete valuation ring by Proposition 4. For $j > \alpha$, $B_{n_j}(n_j) \subseteq B_{n_j}$ and $B_{n_j}(n_j) = \bigcap_{k=1}^{\alpha+1} (B_{n_j})_{b_{jk}}$, where $n_j = (b_{j1}, \ldots, b_{j\alpha})$. Hence $B_{n_j} = B_{n_j}(n_j) = \bigcap_{k=1}^{\alpha+1} (B_{n_j})_{b_{jk}}$. Since $\text{dim}(B_{n_j})_{b_{jk}} \leq n-1$, by hypothesis $(B_{n_j})_{b_{jk}}$ is a Krull domain and hence $\bar{A} = \bar{B}$ is a Krull domain.

Proposition 6. Let A be a noetherian integral domain with $\text{dim} A = n \geq 2$. Suppose that \bar{R} is a Krull domain for any local domain R with $\text{dim} R \leq n$. Then \bar{A} is a Krull domain.

Proof. $\bar{A} = \bigcap_{m} \bar{A}_m$, where the intersection runs through all maximal ideals of A. By hypothesis each \bar{A}_m is a Krull domain, so it is sufficient to show that for any non-zero element a in A, $\mathcal{F} = \{\bar{p} \in \text{Spec}(\bar{A}) : \text{ht } \bar{p} = 1, a \in \bar{p}\}$ is a finite set. Thus we shall prove the following:

1. $\mathcal{F}_0 = \{\bar{p} : \bar{p} \cap A = \bar{p}, \bar{p} \in \mathcal{F}\}$ is finite.
2. For each $\bar{p} \in \mathcal{F}_0$, $\mathcal{F}_p = \{\bar{p} \in \mathcal{F} : \bar{p} \cap A = \bar{p}\}$ is finite.

Proof of (2). The number of elements in \mathcal{F}_p is the number of maximal ideals in \bar{A}_p with height 1 which lies over the maximal ideal of the local domain A_p. Let $B = A_p(\bar{p}) \cap \bar{A}_p$. Then B is a semi-local domain (\cite{1}). Hence \mathcal{F}_p is a finite set by Proposition 4.

Proof of (1). Let $\bar{p} = \bar{p} \cap A, \bar{p} \in \mathcal{F}$. If $\text{ht } \bar{p} = 1$, then $\bar{p} \in \text{Ass}(aA)$. Thus the number of \bar{p} with $\text{ht } \bar{p} = 1$ is finite. Now suppose $\text{ht } \bar{p} > 1$. If $A_p(\bar{p}) = A_p$, then $A_p(\bar{p}) \subseteq A_p$. Hence \bar{A}_p has no maximal ideal of height 1 by Proposition 3. This is a contradiction. Therefore $A_p(\bar{p}) \supseteq A_p$. Now we need a lemma.

Lemma. Let (A, m) be a local domain with field of quotients K. If $A(m) \supseteq A$ then for any $a \neq b$ in m, \bar{m} is an associated prime divisor of bA.

Proof of Lemma. Let $m = (a_1, \ldots, a_r) = (a_1, \ldots, a_r, b)$. Then $A(m) = \bigcap_{j=1}^{r} A_{a_j} \cap A_b = A$. Hence there is an element x in $A(m)$ but $x \notin A$. We may assume $xm \subseteq A$. Write $x = d/bi$. Then, as $xm \subseteq A$, $dm \subseteq b_i A$ i.e., $b_i : d \supseteq m$.

If $b_i : d \neq m$, then $b_i : d = A$ and $d = b_i a$ for some a in A. Hence $x \in A$, which is a contradiction. Thus $b_i : d = m$. Now consider $b_i^{-1} : d \supseteq m$. Then it follows that either there is an element c in A such that $b : c = m$ or $b_i^{-1} : d = m$. Consequently, we have $b : c = m$ for some c in A. Lemma is proved.

By Lemma \mathcal{F}_p is an associated prime ideal of aA but the number of associated prime ideals of aA is finite. Hence \mathcal{F}_0 is finite.
PROPOSITION 7. ([3], (33.10)) The derived normal ring \overline{A} of a noetherian integral domain A is a Krull domain.

Proof. In view of Propositions 1, 5 and 6 the assertion is true for any noetherian domain of finite Krull dimension.

For a general noetherian domain A, since $\dim A_m < \infty$ for any maximal ideal m and $\overline{A} = \cap_m A_m$, to get the assertion, it is sufficient to show that for any $0 \neq a$ in A, $\mathcal{I} = \{\overline{\mathfrak{p}} \in \text{Spec}(\overline{A}) : \text{ht} \overline{\mathfrak{p}} = 1, a \in \overline{\mathfrak{p}}\}$ is a finite set. But the same reasoning as in Proposition 6 gives the claim.

PROPOSITION 8. ([3], (33.12)) The derived normal ring \overline{A} of a noetherian integral domain A of Krull dimension ≤ 2 is again noetherian.

Proof. If $\dim A \leq 1$, the assertion is clear by Proposition 1. Suppose $\dim A = 2$. Let $\overline{\mathfrak{p}}$ be a prime ideal of \overline{A} with height 1 and let $\mathfrak{p} = \mathfrak{p} \cap A$. If $\overline{\mathfrak{p}}$ is not maximal, then $\text{ht} \mathfrak{p} = 1$. Since the quotient field $K(\overline{A}/\overline{\mathfrak{p}})$ of $\overline{A}/\overline{\mathfrak{p}}$ is a finite algebraic extension of the quotient field $K(\mathfrak{p})$ of A/\mathfrak{p} and $\dim (A/\mathfrak{p}) = 1$, by Proposition 1 $\overline{A}/\overline{\mathfrak{p}}$ is noetherian. Thus by Mori-Nishimura’s theorem ([4], Theorem), \overline{A} is noetherian.

Note that in Proposition 1 B is not necessarily finite ([3], p. 205, Example 3). In Proposition 8 if B is a ring between A and \overline{A}, then B is not necessarily noetherian ([3], p. 207, Example 4), and in Proposition 7 even A is not necessarily noetherian ([3], p. 207, Example 5).

The author expresses his hearty thanks to Professor M. Nagata and Dr. J. Nishimura for their valuable suggestions.

References

Jeonbug National University