SCALE-INVARIANT MEASURABILITY
IN YEH-WIENER SPACE

BY KUN SOO CHANG

1. Introduction

Let $R = \{(s,t) : 0 \leq s \leq a, 0 \leq t \leq b\}$ and $C_2[R]$ be Yeh-Wiener space, i.e. $C_2[R] = \{x(\cdot, \cdot) : x(a,t) = x(s, \alpha) = 0, x(s, t) \text{ is continuous on } R\}$. $C_2[R]$ is often referred to as two parameter Wiener space. Let $a = s_0 < s_1 < \cdots < s_m = b$ and $a = t_0 < t_1 < \cdots < t_n = \beta$ and let $-\infty \leq a_{j,k} \leq b_{j,k} \leq +\infty$ be given for $j = 1, 2, \ldots, m$ and $k = 1, 2, \ldots, n$. Let $E = (a_{11}, b_{11}) \times \cdots \times (a_{mn}, b_{mn}]$. $I = J(\alpha, \tau_1)(E) \equiv \{x \in C_2[R] : (x(s_1, t_1), \ldots, x(s_m, t_n)) \in E\}$ is called a strict interval of $C_2[R]$. If E is an arbitrary measurable subset of \mathbb{R}^{mn}, then I is called an interval of $C_2[R]$.

The collection \mathcal{I} of all such strict intervals form a semi-algebra of subsets of $C_2[R]$. The measure of the strict interval I is defined to be

$$m_1(I) = \int_{E} \omega(\overline{u} : \overline{s} : \overline{t}) \, d\overline{u},$$

where

$$\omega(\overline{u} : \overline{s} : \overline{t}) = \omega(u_{11}, \ldots, u_{mn}; s_1, \ldots, s_m; t_1, \ldots, t_n)$$

and $u_{0,k} = u_{j,0} = 0$ for all j and k. This measure is countably additive on \mathcal{I} and can be extended in the usual way to the σ-algebra $\sigma(\mathcal{I})$ generated by the strict intervals and then can be further extended so as to be a complete measure. This completed measure space is denoted by $(C_2[R], \mathcal{I}_1, m_1)$ and \mathcal{I}_1 is called the class of Yeh-Wiener measurable sets.

For $x \in C_2[R]$, let $\|x\| = \max_{(s, t) \in R} |x(s, t)|$. Then $(C_2[R], \|\cdot\|)$ is a separable Banach space.

Let \mathcal{B} be the collection of all sets of the form $J(\alpha, \tau_1)(B)$ for all $(\overline{s} : \overline{t})$ and all Borel set B in \mathbb{R}^{mn}. Then \mathcal{B} is an algebra of subsets of $C_2[R]$. Let $\sigma(\mathcal{B})$ be the σ-algebra generated by \mathcal{B} and $\mathcal{B}(C_2[R])$ be the class of Borel sets in $C_2[R]$. Then it is well known that $\sigma(\mathcal{B}) = \sigma(\mathcal{I}) = \mathcal{B}(C_2[R])$. $\sigma(\mathcal{I})$ is

Received May 20, 1982
sometimes referred to as the σ–algebra of strictly Yeh–Wiener measurable sets.

Let σ_m be the partition:

$$\sigma_m = \{(s_j, t_k) : s_j = a + j\frac{(b-a)}{m}, t_k = a + k\frac{(b-a)}{m} : j, k = 1, 2, \ldots, m\}.$$

For each $x \in C_2[\mathbb{R}]$, let

$$S_{\sigma_m}(x) = \sum_{j=1}^{m} \sum_{k=1}^{m} \{x(s_j, t_k) - x(s_{j-1}, t_k) - x(s_j, t_{k-1}) + x(s_{j-1}, t_{k-1})\}^2.$$

For each $\lambda \geq 0$, let

$$C_\lambda = \{x \in C_2[\mathbb{R}] : \lim_{n \to \infty} S_{\sigma_n}(x) = \lambda^2 (b-a) (\beta - \alpha)/2\}$$

$$D = \{x \in C_2[\mathbb{R}] : \lim_{n \to \infty} S_{\sigma_n}(x) \text{ fails to exist}\}.$$

Note that $\nu C_2 = C_{\nu^2}$ for $\nu > 0$, $\lambda \geq 0$. Clearly $C_\lambda(\lambda \geq 0)$ and D are Borel sets and $C_2[\mathbb{R}]$ is the disjoint union of this family of sets.

The key to our discussion is the following result due to Skoug [4].

Theorem 1.1. $m_1(C_1) = 1$.

In § 2 we will extend this result to partitions $\sigma_{h(n)}$ where h is an increasing function from \mathbb{N} into \mathbb{N} such that $n \leq h(n)$ for all $n \in \mathbb{N}$.

Definitions. A set $E \subseteq C_2[\mathbb{R}]$ is said to be scale–invariant measurable if $\lambda E \subseteq \Upsilon_1$ for every $\lambda > 0$. A scale–invariant measurable set N is called scale–invariant null if $m_1(\lambda N) = 0$ for every $\lambda > 0$. A property which holds except on a scale–invariant null set will be said to hold s–almost everywhere (denoted by s–a.e.).

In this paper we will extend the results on scale–invariant measurability in Wiener space which Johnson and Skoug obtained in [2] to Yeh–Wiener space. Many of the concepts, theorems and proofs will be much like analogous results in [2]. A number of the proofs will be omitted.

2. Preliminaries and Some Results in Yeh–Wiener Space

The following three propositions are well known results. We will state them without proof.

Proposition 2.1. E is Lebesgue measurable in \mathbb{R}^m iff $J_{(\mathcal{G}, \mathcal{F})}(E)$ is Yeh–Wiener measurable. In this case,

$$m_1(J_{(\mathcal{G}, \mathcal{F})}(E)) = \int_{\mathbb{R}^m} \omega(\mathbf{u} : \mathbf{s} : \mathbf{f}) d\mathbf{u}.$$
PROPOSITION 2.2. Let \(f(u_{11}, \ldots, u_{mn}) \) be a Lebesgue measurable function on \(\mathbb{R}^{mn} \) and \(F(x) = f(x(s_1, t_1), \ldots, x(s_m, t_n)) \). Then \(F \) is Yeh–Wiener measurable and
\[
\int_{C_2[\mathbb{R}]} F(x) \, dm_1(x) = \int_{\mathbb{R}^{mn}} f(u) \omega(u : \tilde{s} : \tilde{t}) \, du.
\]

Note that actually \(F(x) \) is Yeh–Wiener measurable iff \(f \) is Lebesgue measurable.

PROPOSITION 2.3. (a) If \(E \) is Yeh–Wiener measurable, then \(-E \) is Yeh–Wiener measurable and \(m_1E = m_1(-E). \)

(b) \[
\int_{C_2[\mathbb{R}]} F(x) \, dm_1(x) = \int_{C_2[\mathbb{R}]} F(-x) \, dm_1(x).
\]

Since \(\sigma(\mathcal{E}) = \mathcal{B}(C_2[\mathbb{R}]) \) we have that if \(E \) is a Borel set in \(\mathbb{R}^{mn} \), then \(J_{\tilde{x}, \tilde{t}}(E) \) is a Borel set in \(C_2[\mathbb{R}] \). The following proposition shows the converse to this fact. First of all we state a simple lemma.

LEMMA 2.4. Given any real numbers \(u_{ij} \), \(0 \leq i \leq m, 0 \leq j \leq n \), let \(u \) denote the matrix \((u_{ij}) \). Then there exists a piecewise linear continuous function \(H(u) \) on \(\mathbb{R} \) such that \(H(u)(s_i, t_j) = u_{ij} \); further, if \(u_{ij}^{(k)} \to u_{ij} \) as \(k \to \infty \) for \(0 \leq i \leq m, 0 \leq j \leq n \), \(H(u^{(k)}) \to H(u) \) uniformly on \(\mathbb{R} \).

PROPOSITION 2.5. If \(J_{\tilde{x}, \tilde{t}}(E) \) is a Borel set in \(C_2[\mathbb{R}] \), then \(E \) is a Borel set in \(\mathbb{R}^{mn} \).

Proof. Define \(H \) on \(\mathbb{R}^{mn} \) as in Lemma 2.4 so that \(H(u)(s_i, t_j) = 0 \) if \(s = \alpha \) or \(t = \alpha \). Such an \(H \) is a continuous (and hence Borel) function from \(\mathbb{R}^{mn} \) to \(C_2[\mathbb{R}] \). Now \(X_E(u) = (X_{J_{\tilde{x}, \tilde{t}}(E)} \circ H)(u) \) since \(u \in E \) iff \(H(u) \in J_{\tilde{x}, \tilde{t}}(E) \). Suppose \(J_{\tilde{x}, \tilde{t}}(E) \) is a Borel set in \(C_2[\mathbb{R}] \). Then \(X_E = X_{J_{\tilde{x}, \tilde{t}}(E)} \circ H \) is a Borel function since it is the composition of two Borel functions. Hence \(E \) is a Borel subset of \(\mathbb{R}^{mn} \).

PROPOSITION 2.6. Let \(h : N \to N \) be an increasing function such that \(n \leq h(n) \) for all \(n \in N \). Let
\[
C_2^h = \{ x \in C_2[\mathbb{R}] : \lim_{t \to h(x)} S_{\alpha}(x) = \lambda (b-a)(\beta-\alpha)/2 \}.
\]

Then \(m_1(C_2^h) = 1 \).

Proof. Skoug [4, Proof of Lemma 1] showed that
\[
\int_{C_2[\mathbb{R}]} \left| S_{\delta h(x)}(x) - (b-a)(\beta-\alpha)/2 \right|^2 \, dx = \frac{1}{2} \left((b-a)(\beta-\alpha)/h(n) \right)^2.
\]

Let \(E_n = \{ x : \left| S_{\delta h(x)}(x) - (b-a)(\beta-\alpha)/2 \right| \geq \frac{\log n}{\sqrt{2n}} (b-a)(\beta-\alpha) \}. \)
\[1/2 \left\{ \frac{(b-a)(\beta-\alpha)}{h(n)} \right\}^2 = \int_{C_2([R])} \left\{ S_{\frac{h(n)}{2}}(x) - \frac{(b-a)(\beta-\alpha)}{2} \right\}^2 dx \]
\[\geq \int_{E_n} \left\{ S_{\frac{h(n)}{2}}(x) - \frac{(b-a)(\beta-\alpha)}{2} \right\}^2 dx \]
\[\geq \frac{(\log n)^2}{2n} (b-a)^2 (\beta-\alpha)^2 \cdot m_1(E_n).\]

Hence \(m_1(E_n) \leq \frac{n}{[h(n) \log n]^2} \leq \frac{1}{n(\log n)^2} \)

Let \(F_n = \bigcup_{k=n}^\infty E_k\) and \(F = \bigcap_{n=1}^\infty F_n\). Then
\[m_1(F) \leq m_1(F_n) \leq \sum_{k=n}^\infty m_1(E_k) \leq \sum_{k=n}^\infty \frac{1}{k(\log k)^2} \to 0 \quad \text{as} \quad n \to \infty.\]

So \(m_1(F) = 0\). But for \(x \in F\), i.e. for \(x \in E_k\) for all \(k \geq n\) and for some \(n\),
\[\left| S_{\frac{h(n)}{2}}(x) - \frac{(b-a)(\beta-\alpha)}{2} \right| < \frac{\log k}{\sqrt{2k}} (b-a)(\beta-\alpha) \quad \text{for all} \quad k \geq n.\]

Hence \(\lim_{k \to \infty} S_{\frac{h(n)}{2}}(x) - \frac{(b-a)(\beta-\alpha)}{2} \leq \lim_{k \to \infty} \frac{\log k}{\sqrt{2k}} (b-a)(\beta-\alpha) = 0.\)

This implies that \(\lim_{k \to \infty} S_{\frac{h(n)}{2}}(x) = \frac{(b-a)(\beta-\alpha)}{2}\) for \(x \in F\). But \(m_1(F) = 0.\)

3. Scale-Invariant Measurable Sets in Yeh-Wiener Space

Let \(m_1\) be the Borel measure given by \(m_1(B) = m_1(\lambda^{-1}B)\) for \(B \in \mathcal{B}(C_2[R]).\)
Since \(\lambda^{-1}C_2 = C_1, m_1(C_2) = m_1(C_1) = 1\) by Theorem 1.1.

Let \(\mathcal{Y}_1\) denote the \(\sigma\)-algebra obtained by completing \((C_2[R], \mathcal{B}(C_2[R], m_2)\)
and let \(\mathcal{N}_1\) be the class of \(m_1\)-null sets. Note that every subset of \(C_2[R]\setminus C_1\) is in \(\mathcal{N}_1\). Let \(\mathcal{Y}\) and \(\mathcal{N}\) be the class of scale-invariant measurable sets and scale-invariant null sets, respectively.

Proposition 3.1.

(i) \(N\) is in \(\mathcal{N}_1\) iff \(\lambda^{-1}N\) is in \(\mathcal{N}_1\); equivalently, \(\mathcal{N}_1 = \lambda \mathcal{N}_1.\)
(ii) \(E\) is in \(\mathcal{Y}_1\) iff \(\lambda^{-1}E\) is in \(\mathcal{Y}_1\); equivalently, \(\mathcal{Y}_1 = \lambda \mathcal{Y}_1.\)
(iii) \(m_2(E) = m_1(\lambda^{-1}E)\) for \(E\) in \(\mathcal{Y}_1.\)

Proof.

(i) Let \(N\) be in \(\mathcal{N}_1\). Then \(N \subseteq M\) where \(M\) is an \(m_1\)-null Borel set. Hence \(m_1(\lambda^{-1}M) = m_1(M) = 0\) and so \(\lambda^{-1}M\) is an \(m_1\)-null Borel set. But then \(\lambda^{-1}N \subseteq \lambda^{-1}M\) is in \(\mathcal{N}_1\). The converse can be shown in essentially the same way.

(ii) Let \(E\) be in \(\mathcal{Y}_1\). Then \(E = B \cup N\) where \(B\) is in \(\mathcal{B}(C_2[R])\) and \(N\) is in \(\mathcal{N}_1\). Then \(\lambda^{-1}N\) is in \(\mathcal{N}_1\) by (i) and so \(\lambda^{-1}E = \lambda^{-1}B \cup \lambda^{-1}N\) is in \(\mathcal{Y}_1\). The rest of (ii) is easily checked.

(iii) Let \(E\) be in \(\mathcal{Y}_2\). Then \(E = B \cup M\) where \(B\) is in \(\mathcal{B}(C_2[R])\) and \(N\) is \(m_2\)-null. Then
\[m_2(E) = m_2(B \cup N) = m_2(B) = m_1(\lambda^{-1}B) = m_1(\lambda^{-1}B \cup \lambda^{-1}N) = m_1(\lambda^{-1}E).\]
PROPOSITION 3.2. \(\mathcal{Y} = \bigcap_{\lambda > 0} \mathcal{Y}_\lambda; \mathcal{Y} = \bigcup_{\lambda > 0} \mathcal{Y}_\lambda; \mathcal{Y} \) is a \(\sigma \)-algebra of subsets of \(C_2[\mathbb{R}] \).

REMARK. Beginning with this proposition, most of the proofs in the rest of this section are much like the proofs of corresponding results in [2]. We will include a few of these proofs but will omit most of them.

PROPOSITION 3.3. (i) \(E \) is in \(\mathcal{Y} \) iff \(E \cap C_2 \) is in \(\mathcal{Y}_\lambda \) for every \(\lambda > 0 \).

(ii) \(E \) is in \(\mathcal{N} \) iff \(E \cap C_2 \) is in \(\mathcal{N}_\lambda \) for every \(\lambda > 0 \).

The next theorem is quite simple. But it gives a very useful characterization of \(\mathcal{Y} \) and \(\mathcal{N} \) in that it shows rather well what scale-invariant measurable sets and scale-invariant null sets are really like and how they compare to Yeh–Wiener measurable sets and Yeh–Wiener null sets respectively.

THEOREM 3.4. (i) \(E \) is in \(\mathcal{Y} \) iff \(E \) has the form

\[
E = (\bigcup_{\lambda > 0} E_\lambda) \cup L,
\]

where each \(E_\lambda \) is an \(m_2 \)-measurable subset of \(C_2 \) and \(L \) is an arbitrary subset of \(C_0 \cup D \). Further, for \(E \) written in this manner, \(m_2(E) = m_2(E_\lambda) \) for all \(\lambda > 0 \).

(ii) \(N \) is in \(\mathcal{N} \) iff \(N \) has the form

\[
N = (\bigcup_{\lambda > 0} N_\lambda) \cup L,
\]

where each \(N_\lambda \) is an \(m_2 \)-null subset of \(C_2 \) and \(L \) is an arbitrary subset of \(C_0 \cup D \).

REMARK. The preceding theorem shows that there are many more Yeh–Wiener measurable sets than scale–invariant measurable sets: A set \(E \) is Yeh–Wiener measurable if and only if it has the form \(E_1 \cup L \) where \(E_1 \) is an \(m_1 \)-measurable subset of \(C_1 \) and \(L \) is an arbitrary subset of \((\bigcup_{0 < i \leq 1} C_i) \cup D \cup C_0 \).

Similarly a set is Yeh–Wiener null if and only if it has the form \(N_1 \cup L \) where \(N_1 \) is an \(m_1 \)-null subset of \(C_1 \) and \(L \) is an arbitrary subset of \((\bigcup_{0 < i \leq 1} C_i) \cup D \cup C_0 \).

Let \(a = s_0 < s_1 < \ldots < s_m = b, \alpha = t_0 < t_1 < \ldots < t_n = S \) and let \(E \) be any subset of \(\mathbb{R}^m \). Let

\[
Q = \bigcup_{\alpha \in \mathbb{Q}} \bigcup_{\lambda > 0} \bigcup_{(s_1, t_1) \in E} \bigcup_{(s_2, t_2) \in E} \ldots \bigcup_{(s_m, t_m) \in E} \{x \in C_2[\mathbb{R}] : (x(s_1, t_1), \ldots, x(s_m, t_m)) \in E\}.
\]

We have seen, in §2, that \(E \) is Borel measurable in \(\mathbb{R}^m \) if and only if \(Q \) is Borel measurable in \(C_2[\mathbb{R}] \) and that \(E \) is Lebesgue measurable in \(\mathbb{R}^m \) if and only if \(Q \) is Yeh–Wiener measurable [3]. It is easy to see that such sets \(Q \) are scale–invariant measurable, since for any \(\lambda > 0 \),

\[
\lambda Q = \{x \in C_2[\mathbb{R}] : (x(s_1, t_1), \ldots, x(s_m, t_m)) \in \lambda^{-1}E\}
\]
is Yeh–Wiener measurable.

Proposition 3.5. For every \(\lambda > 0 \), \(B(C_2^2[R]) \subset \mathcal{I} \subset \mathcal{J}_0 \).

The following result of Skoug [4] becomes rather transparent using Theorem 3.4.

Corollary 3.6. Let \(f \) be any function with domain \((0, \infty) \) and satisfying \(0 \leq f(\lambda) \leq 1 \). Then there exists \(E \) in \(\mathcal{I} \) such that \(m_1(\lambda E) = f(\lambda) \) for all \(\lambda > 0 \).

Proof. For each \(\lambda > 0 \), pick \(E \in C_1 \) such that \(E \) is in \(\mathcal{I} \) and \(m_1(E) = f(\lambda^{-1}) \). (Such \(E \) exists by the following lemma.) Then \(E = \bigcup_{n=1}^{\infty} E_n \) is the desired set since, by Proposition 3.1 and Theorem 3.4, we have \(m_1(\lambda E) = m_1(E) = m_1(E) \).

Lemma. Given \(\gamma \in [0,1] \), there exists \(E \in C_1 \) such that \(E \in \mathcal{I} \) and \(m_1(E) = \gamma \) for each \(\lambda > 0 \).

Proof. Given \(\gamma \in [0,1] \), there exists a real number \(a_\gamma \) such that

\[
\frac{1}{\sqrt{\pi (b-a) (\beta - \alpha)}} \int e^{-\frac{u^2}{(b-a) (\beta - \alpha)}} du = \gamma.
\]

Let \(E = \{ x \in C_2^2[R] : -\infty < x(b, \beta) \leq a_\gamma \} \). Then \(E \) is in \(\mathcal{I} \) and \(m_1(E) = \gamma \). Let \(E_\gamma = E \cap C_1 \). Then \(E_\gamma \in C_1 \) and \(m_1(E_\gamma) = m_1(E) = \gamma \). Let \(E_\lambda = \lambda E_\gamma \). Then \(E_\lambda \) is in \(\mathcal{I} \) and \(E_\lambda \in \mathcal{I} \).

Our sets \(C_1, \lambda \geq 0 \) and \(D \) depend on the particular sequence of partitions on \(R \) that we choose. If \(\sigma_{h,(a)} \) denotes another sequence of partitions, we may let

\[
C_1^{h,(a)} = \{ x \in C_2^2[R] : \lim_{n \to \infty} S_{h,(a)}^n(x) = \lambda^2 (b-a)(\beta - \alpha)/2 \}
\]

and

\[
D^{h,(a)} = \{ x \in C_2^2[R] : \lim_{n \to \infty} S_{h,(a)}^n(x) \text{ fails to exist} \}.
\]

Essentially because of Proposition 2.6, all of the results obtained up to this point, with changes in notation where appropriate, go through. Note, however, that \(\mathcal{I}, \mathcal{J}, m_1, \mathcal{N} \) and \(\% \) are all independent of the sequence of partitions. A set \(E \) in \(\mathcal{N} \) now has two decompositions according to the two versions of Theorem 3.4:

\[
E = (\bigcup_{n=0}^{\infty} E_n) \cup L = (\bigcup_{n=0}^{\infty} E_n^h) \cup L^h
\]

where \(E_n^h = E \cap C_n^h \) and \(L^h = E \cap (C_0^h \cup D^h) \). How do these two decompositions relate to one another? The next proposition shows that they agree up to a scale–invariant null set.

Proposition 3.7. The two decompositions of \(E \) given by (3.4) have the property that the set

\[
E = (\bigcup_{n=0}^{\infty} E_n) \cup L = (\bigcup_{n=0}^{\infty} E_n^h) \cup L^h
\]
Scale-invariant measurability in Yeh–Wiener space

\[(3.5) \quad (\bigcup_{\lambda > 0} E_\lambda \Delta E_\lambda) \cup (L \Delta L^k) \]

is scale-invariant null.

Proof. First note that for all \(\lambda > 0 \)
\[
m_2(E_\lambda \setminus E_\lambda^k) = m_2[(E \cap C_\lambda) \setminus (E \cap C_\lambda^k)]
\]
\[
= m_2(E \cap (C_\lambda \setminus C_\lambda^k))
\]
\[
\leq m_2(C_\lambda \setminus C_\lambda^k)
\]
\[
\leq m_1(C_\lambda \setminus [R \setminus C_\lambda]) = 0.
\]

Thus by Theorem 3.4, the set \(\bigcup_{\lambda > 0} (E_\lambda \setminus E_\lambda^k) \cup (L \setminus L^k) \) is scale-invariant null.

In similar fashion one can show that the set \(\bigcup_{\lambda > 0} (E_\lambda^k \setminus E_\lambda) \cup (L^k \setminus L) \) is scale-invariant null which concludes the proof since
\[
\bigcup_{\lambda > 0} (E_\lambda \Delta E_\lambda) \cup (L \Delta L^k) = \bigcup_{\lambda > 0} (E_\lambda \setminus E_\lambda^k) \cup (L \setminus L^k) \cup \{ \bigcup_{\lambda > 0} (E_\lambda^k \setminus E_\lambda) \cup (L^k \setminus L) \}.
\]

This paper is based on Chapter 2 of the author’s Ph. D. Thesis [1] written at the University of Nebraska under the direction of Professor Gerald W. Johnson.

References

Yonsei University