THE T_θ-TOPOLOGY AND FAINTLY CONTINUOUS FUNCTIONS

By Paul E. Long and Larry L. Herrington

1. Introduction

For a topological space X and $A \subseteq X$, the θ-closure of A is defined [9] to be the set of all $x \in X$ such that every closed neighborhood of x intersects A non-emptily and is denoted by $\text{Cl}_\theta(A)$. The subset A is called θ-closed if $\text{Cl}_\theta(A) = A$. In a similar manner, the θ-interior of a set $A \subseteq X$ is defined to be the set of all $x \in A$ for which there exists a closed neighborhood of x contained in A. The θ-interior of A is denoted by $\text{Int}_\theta(A)$. In particular, the concept of θ-closed sets has been extensively studied by Professors Velicko [9], Dickman and Porter [1], Joseph [3] and others. With the definition of the θ-interior of a set, a new topology will be described which is related to the semi-regular topology on (X, T). The semi-regular topology, denoted by T_s, is the topology having as its base the set of all regular-open sets in (X, T) [2, Problem 22, p.92]. Recall that a set A is regular-open provided $\text{Int}(\text{Cl}(A)) = A$. Specifically, for any set A, $\text{Int}(\text{Cl}(A))$ is always regular-open.

2. The T_θ-topology

DEFINITION 1. An open set U in (X, T) is called θ-open if $\text{Int}_\theta(U) = U$.

From the definition of θ-closed sets, it follows that the complement of a θ-open set is θ-closed and the complement of a θ-closed set is θ-open. According to [9], the intersection of θ-closed sets is θ-closed and the finite union of θ-closed sets is a θ-closed set. Therefore, arbitrary unions and finite intersections of θ-open sets are themselves θ-open. Consequently, the collection of θ-open sets in a topological space (X, T) form a topology T_θ on X which we call the T_θ-topology. Evidently, $T = T_\theta$ if and only if (X, T) is regular.

THEOREM 1. Let X be any topological space. If $V \subseteq X$ is θ-open and $x \in V$, then there exists a regular-open set U such that $x \in U \subseteq \text{Cl}(U) \subseteq V$.

PROOF. Since V is θ-open, there exists an open set W such that $x \in W \subseteq \text{Cl}(W) \subseteq V$. But $\text{Int}(\text{Cl}(W)) = U$ is regular-open and it follows that $x \in U \subseteq \text{Cl}(U) \subseteq V$ due to the fact that $\text{Cl}(W) \subseteq V$.
COROLLARY TO THEOREM 1. The set V is θ-open if and only if for each $x \in V$ there exists a regular-open U such that $x \in U \subseteq \text{Cl}(U) \subseteq V$.

Theorem 1 implies that in any topological space, $T_\theta \subseteq T_s$. The converse need not be true as the next example shows.

EXAMPLE 1. The topologies T_s and T_θ may be different even in a completely Hausdorff space. Let $X = (0, 2)$ be a subset of the reals R with the usual topology. For each $k \in \mathbb{N}$, define $H_k = \bigcup \left(\left(-\frac{2n+1}{2n(n+1)}, \frac{2n-1}{2n(n-1)} \right) \right)$ for $n > k$, n even, and topologize X using the following subbasic open sets: $\{ V \subseteq X - \{1\} : V \text{ open in } R \} \cup \{ H_k \cup G : k \in \mathbb{N}, G \subseteq X, G \text{ open in } R \text{ and contains the point 1} \}$. Then $U = (3/4, 3/2) \cup H_1$ is regular-open, but not θ-open. Consequently, $T_s \neq T_\theta$.

THEOREM 2. Let $A \subseteq X$ be θ-closed and let $x \in A$. Then there exists regular-open sets which separate x and A.

PROOF. Since $X - A$ is θ-open and contains x, there exists a regular-open set U such that $x \in U \subseteq \text{Cl}(U) \subseteq V$ by Theorem 1. Now $\text{Int}(\text{Cl}(X - \text{Cl}(U)))$ is nonempty, regular-open, contains A and is disjoint from U.

A space is defined to be almost-regular [8] if for each $x \in X$ and regular-closed A not containing x, there exist disjoint open sets U and V such that $x \in U$ and $A \subseteq V$.

THEOREM 3. Let X be almost-regular. Then each regular-open set in X is also θ-open.

PROOF. Since X is almost-regular, for each regular-open V in X and $x \in V$ there exists a regular-open U such that $x \in U \subseteq \text{Cl}(U) \subseteq V$ according to Theorem 2.2 of [8]. Thus each point of V has a closed neighborhood contained in V implying that V is θ-open.

COROLLARY TO THEOREM 3. If (X, T) is almost-regular, then $T_s = T_\theta$.

PROOF. By Theorem 3, $T_s \subseteq T_\theta$ and by Theorem 1, $T_\theta \subseteq T_s$. Therefore, $T_s = T_\theta$.

THEOREM 4. The space (X, T) is almost-regular if and only if $T_s = T_\theta$.

PROOF. If (X, T) is almost-regular, then $T_s = T_\theta$ by the Corollary to Theorem 3. Conversely, if $T_s = T_\theta$, let V be a regular-open set in (X, T) and let $x \in V$. Then V is also θ-open and by Theorem 1 there exists a regular-open set U such that $x \in U \subseteq \text{Cl}(U) \subseteq V$. Consequently, (X, T) is almost-regular by Theorem 2.2.
The Topology and Faintly Continuous Functions

THEOREM 5. Let \(X \) and \(Y \) be topological spaces. If \(U \subseteq X \) and \(V \subseteq Y \) are \(\theta \)-open, then \(U \times V \) is \(\theta \)-open in \(X \times Y \).

PROOF. Let \((x, y) \in U \times V\). Then there exist open sets \(U_1 \) and \(V_1 \) such that \(x \in U_1 \subseteq \text{Cl}(U_1) \subseteq U \) and \(y \in V_1 \subseteq \text{Cl}(V_1) \subseteq V \) because both \(U \) and \(V \) are \(\theta \)-open. Therefore, \((x, y) \in \text{Cl}(U_1) \times \text{Cl}(V_1) = \text{Cl}(U_1 \times V_1) \subseteq U \times V\). Consequently, each point of \(U \times V \) has a closed neighborhood contained in \(U \times V \) which shows \(U \times V \) is \(\theta \)-open.

THEOREM 6. Let \(W \) be \(\theta \)-open in the product space \(\prod_{\alpha \in J} X_{\alpha} \). Then each projection \(\Pi_{\alpha}(W) \) is \(\theta \)-open in \(X_{\alpha} \).

PROOF. Let \(y_{\alpha} \in \Pi_{\alpha}(W) \) and let \(\{y_{\alpha}\} \) be a point in \(W \) such that \(\Pi_{\alpha}(y_{\alpha}) = y_{\alpha} \).

Now since \(W \) is \(\theta \)-open, there exists a basic open set \(U = U_{\alpha_1} \times U_{\alpha_2} \times \ldots \times U_{\alpha_n} \times \prod_{\alpha \neq \alpha_1, \ldots, \alpha_n} X_{\alpha} \) such that \(\{y_{\alpha}\} \in U \subseteq \text{Cl}(U) = \text{Cl}(U_{\alpha_1}) \times \text{Cl}(U_{\alpha_2}) \times \ldots \times \text{Cl}(U_{\alpha_n}) \times \prod_{\alpha \neq \alpha_1, \ldots, \alpha_n} X_{\alpha} \subseteq W \).

Without loss of generality, we may assume that for some \(1 \leq j \leq n, \alpha = \alpha_j \). Thus, \(y_{\alpha} \in \Pi_{\alpha_1}(U_{\alpha_1}) \subseteq \Pi_{\alpha_1}(W) \) so that each point of \(\Pi_{\alpha_1}(W) \) contains a closed neighborhood lying in \(\Pi_{\alpha_1}(W) \). It follows that \(\Pi_{\alpha_1}(W) \) is \(\theta \)-open.

THEOREM 7. Let \(f : X \to Y \) be a function from \(X \) onto \(Y \) that is both open and closed. Then \(f \) preserves \(\theta \)-open sets.

PROOF. Let \(U \) be \(\theta \)-open in \(X \) and let \(y \in f(U) \). Then there exists an \(x \in U \) such that \(f(x) = y \) and an open set \(U_0 \) such that \(x \in U_0 \subseteq \text{Cl}(U_0) \subseteq U \). Therefore, \(f(x) = y \in f(U_0) \subseteq f(\text{Cl}(U_0)) \subseteq f(U) \). Now, the fact that \(f \) is both open and closed shows that \(f(U_0) \) is an open set whose closure \(\text{Cl}(f(U_0)) \subseteq f(\text{Cl}(U_0)) = f(\text{Cl}(U_0)) \) is contained in \(f(U) \). This shows that \(f(U) \) is \(\theta \)-open.

THEOREM 8. Let \(f : X \to Y \) be continuous. If \(V \subseteq Y \) is \(\theta \)-open, then \(f^{-1}(V) \) is \(\theta \)-open in \(X \).

PROOF. Let \(x \in f^{-1}(V) \). Then \(f(x) \in V \) and there exists an open set \(U \) such that \(f(x) \in U \subseteq \text{Cl}(U) \subseteq V \) because \(V \) is \(\theta \)-open. Thus, \(x \in f^{-1}(U) \subseteq f^{-1}(\text{Cl}(U)) \subseteq f^{-1}(V) \). The continuity of \(f \) then gives \(f^{-1}(U) \) as an open set whose closure is contained in \(f^{-1}(V) \) which shows that \(f^{-1}(V) \) is \(\theta \)-open.

3. Faintly-continuous functions

DEFINITION 2. Let \(X \) and \(Y \) be topological spaces. Then \(f : X \to Y \) is faintly-continuous if for each \(x \in X \) and \(\theta \)-open \(V \) containing \(f(x) \), there exists an open
set U containing x such that $f(U) \subseteq V$.

As will be demonstrated shortly, the concept of faintly-continuous is a very weak form of continuity. Perhaps the concept could have been better named \(\theta\)-continuous, but that notation is already reserved for a different kind of non-continuous function. (See, for example, Definition 2 of [6].)

THEOREM 9. Let $f : X \to Y$ be given. Then they are equivalent:
(a) $f : X \to (Y, T)$ is faintly-continuous.
(b) $f : X \to (Y, T_0)$ is continuous.
(c) The inverse image of each \(\theta\)-open set in (Y, T) is open in X.
(d) The inverse image of each \(\theta\)-closed set in (Y, T) is closed in X.

PROOF. The implications follow easily from the definitions.

A function $f : X \to Y$ is called weakly-continuous [4] if for each $x \in X$ and each open set V containing $f(x)$ there exists an open set U containing x such that $f(U) \subseteq \text{Cl}(V)$.

THEOREM 10. If $f : X \to Y$ is weakly-continuous, then f is faintly-continuous.

PROOF. Let $x \in X$ and let V be a \(\theta\)-open set containing $f(x)$. Then there exists an open set W such that $f(x) \in W \subseteq \text{Cl}(W) \subseteq V$. Now, since f is weakly-continuous, there exists an open set U containing x such that $f(U) \subseteq \text{Cl}(W) \subseteq V$. Consequently f is faintly-continuous.

EXAMPLE 2. A faintly-continuous function need not be weakly-continuous. Let $X = [0, 1]$ with topology $\{\emptyset, X, \{1\}\}$ and let $Y = \{a, b, c\}$ with topology $\{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. Finally, let $f : X \to Y$ be defined as $f(0) = a$ and $f(1) = b$. Then f is not weakly-continuous at $x=0$, but f is faintly-continuous since the only \(\theta\)-open set in Y is Y itself.

Theorem 10 and Example 2 now allow us to see the position faintly-continuous functions occupy among other well-known non-continuous functions. First, however, we should recall the definitions of almost-continuity and \(\theta\)-continuity:
a function $f : X \to Y$ is almost-continuous (\(\theta\)-continuous) if for each $x \in X$ and each regular-open V (open V) containing $f(x)$, there exists an open U containing x such that $f(U) \subseteq V$ ($f(\text{Cl}(U)) \subseteq \text{Cl}(V)$). Now it readily follows that

continuity\Rightarrowalmost-continuity\Rightarrow\(\theta\)-continuity\Rightarrowweak-continuity\Rightarrowfaint-continuity.

These implications, aside from the last one, are explored in [6].

THEOREM 11. Let (Y, T) be an almost-regular space and $f : X \to (Y, T)$ a
faintly-continuous function. Then \(f \) is almost-continuous.

PROOF. Since \(f : X \rightarrow (Y, T) \) is faintly-continuous, then \(f : X \rightarrow (Y, T_0) \) is continuous. But \((Y, T)\) almost-regular implies \(T_0 = T_3\) by the Corollary to Theorem 3. Thus, \(f : X \rightarrow (Y, T_3) \) is continuous showing that \(f : X \rightarrow (Y, T) \) is almost-continuous.

COROLLARY TO THEOREM 11. If \((Y, T)\) is almost-regular and \(f : Y \rightarrow (Y, T) \), then they are equivalent:

(a) \(f \) is faintly-continuous.
(b) \(f \) is weakly-continuous.
(c) \(f \) is \(\theta \)-continuous.
(d) \(f \) is almost-continuous.

In the above Corollary, if almost-regular is replaced with regular, then we may add continuity to the list of equivalences.

THEOREM 12. If \(f : X \rightarrow Y \) is faintly-continuous and \(A \subseteq X \), then \(f \mid A : A \rightarrow Y \) is faintly-continuous.

PROOF. Evident.

For a given \(f : X \rightarrow Y \), the graph map \(g : X \rightarrow X \times Y \) is defined as \(g(x) = (x, f(x)) \).

THEOREM 13. If the graph map of \(f : X \rightarrow Y \) is faintly-continuous, then \(f \) is faintly-continuous.

PROOF. Let \(x \in X \) and let \(V \) be \(\theta \)-open in \(Y \) containing \(f(x) \). Then \(X \times V \) is \(\theta \)-open in \(X \times Y \) by Theorem 5 and contains \(g(x) = (x, f(x)) \). Since the graph map \(g : X \rightarrow X \times Y \) is faintly-continuous, there exists an open set \(U \) containing \(x \) such that \(g(U) \subseteq X \times V \). This implies that \(f(U) \subseteq V \) so that \(f \) is faintly-continuous.

THEOREM 14. If \(f : X \rightarrow Y \) is weakly-continuous, then the graph map \(g : X \rightarrow X \times Y \) is faintly-continuous.

PROOF. Let \(x \in X \) and let \(W \) be a \(\theta \)-open set containing \(g(x) \). Then there is a closed neighborhood, hence a closed basic open set \(\text{Cl}(U \times V) \), containing \(g(x) \) and lying inside \(W \). Thus, \(g(x) = (x, f(x)) \subseteq \text{Cl}(U \times V) = \text{Cl}(U) \times \text{Cl}(V) \) so that \(f(x) \subseteq \text{Cl}(V) \). Since \(f \) is weakly-continuous, there exists an open set \(U_0 \subseteq U \) containing \(x \) such that \(f(U_0) \subseteq \text{Cl}(V) \). Consequently, \(g(U_0) \subseteq \text{Cl}(U) \times \text{Cl}(V) \subseteq W \) show-
ing g to be faintly-continuous.

3. Functions with extremely-closed graphs

DEFINITION 3. The graph $G(f)$ of $f : X \to Y$ is **extremely-closed** if for each $(x, y) \in G(f)$ there exists an open set U containing x and a θ-open set V containing y such that $(U \times V) \cap G(f) = \emptyset$.

The proofs to the next two theorems follow easily from the above definition.

THEOREM 15. The graph of $f : X \to Y$ is extremely-closed if and only if for each $x \in X$ and $y \neq f(x)$ there exists an open set U containing x and a θ-open set V containing y such that $f(U) \cap V = \emptyset$.

THEOREM 16. The graph of $f : X \to (Y, T)$ is extremely-closed if and only if the graph of $f : X \to (Y, T_\emptyset)$ is closed.

THEOREM 17. If $f : X \to (Y, T)$ is faintly-continuous and (Y, T_\emptyset) is Hausdorff, then f has an extremely-closed graph.

PROOF. We know that $f : X \to (Y, T_\emptyset)$ is continuous because $f : X \to (Y, T)$ is faintly-continuous. Since T_\emptyset is Hausdorff, the graph of $f : X \to (Y, T_\emptyset)$ is closed [2, Theorem 1, 5(3), p.140]. Thus, $f : X \to (Y, T)$ has an extremely-closed graph by Theorem 16.

THEOREM 18. Let Y be completely Hausdorff and let $f : X \to Y$ be faintly-continuous. Then $G(f)$ is extremely-closed.

PROOF. Let $x \in X$ and let $y \neq f(x)$. Since Y is completely Hausdorff, there exists a continuous $g : Y \to R$ such that $g(f(x)) \neq g(y)$. Thus, there exist open disjoint sets W and G containing $g(f(x))$ and $g(y)$, respectively, such that $g^{-1}(W) \cap g^{-1}(G) = \emptyset$. But $g^{-1}(W)$ is θ-open by Theorem 8 and the fact that every open subset of R is θ-open. Therefore, there exists an open U containing x such that $f(U) \subseteq g^{-1}(W)$ so that $f(U) \cap g^{-1}(G) = \emptyset$. Theorem 15 now implies that the graph of f is extremely-closed.

The graph of $f : X \to Y$ is called **strongly-closed** [5] if for each $(x, y) \in G(f)$ there exist open sets U and V containing x and y, respectively, such that $(U \times \text{Cl}(V)) \cap G(f) = \emptyset$.

THEOREM 19. Let $f : X \to Y$ have an extremely-closed graph. Then f has a strongly-closed graph.
The \(T_\theta \)-topology and Faintly Continuous Functions

PROOF. Let \(x \in X \) and \(y \neq f(x) \). Then by Theorem 15, there exists an open set \(U \) containing \(x \) and a \(\theta \)-open set \(V \) containing \(y \) such that \(f(U) \cap V = \emptyset \). Since \(V \) is \(\theta \)-open, there exists an open set \(V_0 \) such that \(y \in V_0 \subseteq \text{Cl}(V_0) \subseteq V \) so that \(f(U) \cap \text{Cl}(V_0) = \emptyset \). It follows that the graph of \(f \) is strongly-closed by the first Lemma of [7].

From Theorem 19 and [5] we now see the position of extremely-closed graphs as follows:

extremely-closed graph \(\Rightarrow \) strongly-closed graph \(\Rightarrow \) closed graph. It is shown in [5] that a closed graph need not be strongly-closed. Our last example shows the first implication above cannot, in general, be reversed.

EXAMPLE 3. Let \(Y = \{0, 2\} \) and let \(G_k \) be defined by

\[
G_k = \bigcup \left\{ \left[\frac{2n+1}{2n(n+1)}, \frac{2n-1}{2n(n-1)} \right) : n > k, \ n \text{ is odd} \right\}, \ k \in \mathbb{N}.
\]

Let \(H_k \) be defined as in Example 1 and topologize \(Y \) using the following subbasic open sets: \(\{ V \subseteq Y - \{1\} : V \text{ open in } R \} \cup \{ H_k \cup G : k \in \mathbb{N}, \ G \subseteq Y, \ G \text{ open in } R \) and contains the point 1 \} \cup \{ G_k \cup 0 : k \in \mathbb{N} \}. \) Now define \(f : X \rightarrow Y \) by \(f(x) = x \) for all \(x \in X \) where \(X \) is the space given in Example 1. Then \(f \) is continuous and \(Y \) is Hausdorff which implies \(G(f) \) is strongly-closed by the Corollary to Theorem 1 of [5]. However, the point \((1, 0) \in G(f) \), but for each open \(U \) containing 1 and each \(\theta \)-open set \(V \) containing 0, \((U \times V) \cap G(f) \neq \emptyset \). Therefore, \(G(f) \) is not extremely-closed.

The University of Arkansas at Fayetteville and
LSU at Alexandria
U.S.A.

REFERENCES

