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1. Introduction

The main purpose of the present paper is to generalize the results obtained by A.
Hindmarsh in [7] to the holomorphic functions with non-negative real part defined on
.a complete circular domain D in certain class @ in the complex euclidean space C™.
As described in §2, @ includes the bounded symmetric domains. More precisely, we
prove the following.

THEOREM A. A function f: D—C, DEWD, is holomorphic with non-negative real part
if and only if it admits an integral representation of the form:

(1) fx)=i Im f(0)+§p[2Sp (2, 8) —1]du(d), 2D,
with a positive measure u on the Bergman-Shilov boundary B such that

(2) §p g du=0
for all g€QL*(B)* where Sp(z,5) denotes the Szegs Kernel of D and the description
of QL%(B) is given in §2.

THEOREM B. Let Q be a non-empty open subset of DED. If f: Q—C is a continuous
Sunction with non-negative real part and if the function K : QxQ—C, given by

(3) Kolz,5)=8p(z, s)*f<z—>;f&, z,s€Q,
belongs to the class Py(Q), see §4 for definition, then f is holomorphic in Q.

THeOREM C. Let f:Q—C be given as in Theorem B. If in addition Ko D,,(Q)
Sfor all m=1, 2, ..., and if Re f has a real analytic extension to D, then f admits a
holomorphic extension F : D—C with non-negative real part.

Combining Theorem A and Theorem C, we obtain

THEOREM D. Let MCD be a set of uniqueness for holomorphic functions in D, and
let f: M—C be a holomorphic function which admits a real analytic extension to D.
Then [ admits a holomorphic extension F : D—C with non-negative real part if and

conly if Ky(z,8)=8p(z, s)-f(z—);—&l— is positive definite on M.
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Theorem A generalizes the well-known classical Riesz-Herglotz integral representation
theorem for holomorphic functions to a complete circular domain DE@; this theorem
is needed in the proof of Theorem D. A similar generalization has been given in [10]
for polydisks.

Theorem B is a direct generalization of a remarkable result of A. Hindmarsh [7] in
which he proves: If f is a continuous function in a domain D of the upper half plane
in C' with Im f>0 and if feP;(D) then f is holemorphic in D. It should be
remarked that Theorem B still holds true under more general setting. It is easy to see
that the proof of Theorem B goes through for continuous functions f defined on any
open subset Q of C", provided that there is a continuous positive definite function
K:QxQ—-C which is holomorphic and K(z, z)#0 in 2xQ* Q*={z: 2€0}. A
similar result has been obtained by J. Burbea [2].

Thoerem C may be regarded as a generalization of (2) of [7], although it is
considerably weaker. The existence of a real analytic extension of Re f is assumed in
obtaining Theorem C. It is clear that Theorem C can he strengthed to a simply
connected domain D in which there exists a positive definite function K : DxD—C,
holomorphic and K(z, £)#0 in Dx D*,

It is intereting to see if Theorems C and D can still be proved without assuming
the existence of a real analytic extension of £ to DED. It is answered affirmatively
for polydisks in [10].

2. Definitions and preliminaries

Let D be a bounded circular domain with the Bergman Shilov boundary B in the
space C" of n complex variables 2= (2, ..., z,) which is complete with respect to the
origin 0€D. D is circular if 2€D implies ze?cD for 6&70,2z], and complete with
respect to 0D if €D implies rz€D for r&[0,1). Assume that D admits the group
G of holomorphic automorphisms, Then each g&G carries B into itself. In particular,
B is invariant under the stability group K= {#=G : 2(0)=0)}. Clearly, B is circular
whenever D is. If K acts transitively on B, kB=B for every k=K and also gB=B
for g&G. As is well~known [37, K acts by unitary transformations. Consequently,
B has a unique normalized K-invariant measure do=V "'db, where db denotes the
euclidean volume element at 6B and V the euclidean volume of B [9], [11].

By @ we shall denote the class of all the complete bounded circular domains
described above. The bounded symmetric domains form an important subclass of .
Conversely, if any DeD that admits a transitive group of holomorphic automorphisms
is a bounded symmetric domain 712]. In this paper we shall consider only domains D
in the class &, unless specified otherwise.

It is well-known [8] that there exists on B a complete orthonormal system of
continucus functions. Let Z;, denote the monomial z1%1...2,%, k=vi+...+v, k=0,

1,2, ...,0=1, 2’_“’772]!:(71#-}/:—1). From the set {Z;,} we can construct a system @,=

for), v=1,2,...,my, kéo, 1,2, ..., of homogeneous polynomials which is complete and
orthogonal on D, and orthonormal on B. See [8]. The Szegd kernel of D is defined
by the infinite series:
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which converges uniformly on compact subsets of DXD. Therefore, S(z,3) is
holomorphic in 2D and antiholomorphic in s&D, and continuous on DXD. Since
¢ (%) is homogeneous of order %, for each v=1,2,..., ms @4 (2)=0wB)rt if z=rb
for some #&B and 0<r<1. Therefore, for &, & EB

2 S, 0) =8(rb,5).
The Poisson kernel of D is defined by
) P n)=1520 e, sep).
Any holomorphic function f on D has a Fourier series expansion:
(4a) F& = an(fen =),
where
(4b) @ (f)=lim §p f(rb) ¢, (B)do= lim (f), 2ie),

which converges uniformly on compact subsets of D. Furthermore, we have

Lemma 1. ([5], [6]) Let H?(D) (p=1) denote the usual Hardy space on D. If f is
in the space H?(D) with the boundary value f* on B, defined by f*(b) =1 1mf(rb),
beB. Then f has both a Cauchy integral rejrresentation

(5) f(2)=§3S(2,8) f*B)do=(f*S,)
and a Poisson integral representation
(6) f(2)=§pP(2,8) f*(B)do=(f*P,)

for z€D. Furthermore, if

H*(B)={/cL?(B) : (f,S.)=Ff P.)}
then H?(B) is a closed subspace of L?(B) which is isometrically isomorphic to H?(D).
17 f* is the boundary value of f&H?(D), then f*=f a.e. on B.

It should be remarked that the system @, is not complete in the space C(B) of
continuous functions in general. However, according to H. Weyl [14], it is possible
to extend ¥ to a complete orthonormal system of C(B) by adding some system of
functions @1= {p_; : £=1,2,...}. Let ®=@,U®; be such a system. By letting Or=0
for negative k=—1, —2,..., we can denote

(7) @= 40 k=0, £1, £2,...; 1<v<my for £>0; v=0 for £<0}.

Let
T2(B)={f €L*(B) : az,(f) =0, for k< 0}.

It is easy to see that T%(B) is a closed subspace of L2(8) which is isometrically
isomorphic to H2(D) under the correspondence

(8a) =1 T¥(B)—~H*(D),
given by

(8b) =T an(f) onE=, .
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If f* is the boundary value of f, then f*=f a.e. on B. Namely, T?(B) may be
identified with H2(B). See [6].
We also denote by H(B) the class of all functions, holomorphic in D and continuous

in DUB. Define the projections P, P and @ in L2(B) by

P: L2(B)—H2(B)

P: L*(B)~H*B)={fcL*(B) : fe H*(B)}
and

Q: L*(B)—Span ¢ {H?*(B), H*(B)}
Then the space QL?(B) is the complex subspace spanned by the real parts of H?*(B).
If feH(B) then clearly fePL*(B), f&PL%(B) and Pf(0)=£(0).

3. Integral Representation theorem of the Riesz-Herglotz type

In the following lemma we shall list further properties of the Szegd kernel S(z,$)
for later purposes.

LeMMA 2. (1% S(z,5)=8(s, &) for z,s€D, S(2,2)>0 for 2€D and S(z,0)=1 for
zeDUB.
(2°) The function S; defined by S,(z)=S(z, ) belongs to the class H(B) for each
s&D and reproduces functions fEH(B) by
(1) f(2)=(f,S.) (zD).
In particular,
(16) §5S(z, b)de=(1,S5,) =1.
(3% If fEH(B), then
(2a) f(O)=(f,S.) (z€D)
(2b) Re f(0)=(Re £, 1),
and
(2c) f)=i Im f(O)+ (Re f, 25.—1) (z&D),
4% If feEH(B), for z, s&D,
(3a) S(z, §)f(2)=(f, 8.8, L
(3b) (Re £,5.5) =8z, 9 LTI
and

@e) (Im £, $.8)=8(z3) i@%@—
(5% For z, s&D,

(42) P(S.5,)=S(s,2)8.

(4b) P(S.S)=S(s 2S5,

~and

(40) Q(SZS:) :S<S, 2) (Sz—,_Sx'_l) .

Proof. Properties (1% and (2% are evident.
(8%) Since P is a projection of L2(B) onto H?*(B), PS,=S, and P?=P.
This together with (1b) implies (2a):

(f’ SZ) - (f’ PSZ) = (Pf: Sz) = (7(_635 Sz) :W(I» Sz) —:f_@.
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Equality (2b) follows by adding
SO =(f£,8)=(f£1)

and its complex conjugate.

Adding (1a) and (2a), we have
f(z)=—Ref(0) +i Imf(0) + (2Re £, S,).
This together with (2b) implies (2¢).
(4°) For each s&D, S, feH(B). Applying (1a) to S,f, we have
S(z, ) f(2) =(S, £, 82) = (£, 5.5,).
Taking the complex conjugate to the expression obtained from (3a) by exchanging the
roles of z and 5 we also obtain

S(z,8) f(s)= (£, 5:5,).
Adding and subtracting these two relations, we have both relations (3b) and (3c),
respectively.

(8% If feH(B), by (la),
(f,8(5,2)8:) =8(s5,2) (f, 82) =5(z,9) f(2).

This relation and (3a) together imply

(£, 8:80=(£,8(5,2)8.)
for all feH(B). Since S(s,2)S,€H(B), (4a) follows. A similar proof can be given
for (4b). Relations (3b) and (2¢) yield

(Re £, 8.8)=(Re £, 505, 2) (S.+8,—1)).
Since {Re f: feH*(B)} spans QL?*(B) and S,+S5,—1€QL?(B), the assertion (4c)

follows.

Lemma 2 leads to the proof of Theorem A.

Proof of Theorem A. Suppose that f: D—C is a holomorphic function with non-
negative real part in D. Then for r€(0,1) the function £, f,(z) =f(rz), is continuous
and holomorphic in D. By (3°) of Lemma 2,

Jr(2) =i Im £,(0) +§p[2S (2, 8) —11d 1, (8),
where
du,(6) =Re f,(6)do
is a positive measure on B. Clearly, we have
Spg(&)dy, (b) =0
for all g€ (QL?)*(B) and the total variation of g, is bounded as r—1. In fact,
(5) Spdu, () =5p[25(0,6) —1] Re f,()do
=Re f.(0)=Re f(0).
By Helly’s selection theorem, {u,(b)} has a subsequence which converges everywhere
on B to p(d) of bounded variations such that

Iriff fr(z)=i Im f(0)-+§p[25(z, &) ~11du(d),

as desired.
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Conversely, if f is defined as in (1) of §1, then it is holomorphic in D, since
S(z,%) is holomorphic in z&D and continuous in D. Therefore, it remains to show
that Re f>0. If f€L?(B) has an absolutely and uniformly convergent series expansion
in terms of the complete system @.

Then by (2) of §1,

(6) S3Qf) (B)du(b)=§pf(B)du(d),
and (6) is satisfied by the function f=S,3,, that is,

(7) $50(S:5.) (B)du(®) =55(S:5.) By (8.

Taking the real part of (1), §1, we have

Re f(2) =§30S(2,8) +S(z, 5) —11du(b)
=S5(z, 2)"1fpQ(S.S.) (B)du(d), by (4¢).
=82, 2) " 5(S.5.) (B)du(b), by (7).
=8(z,2) 7|8 (=, b) 12du(5) >0,
completing the proof of Theorem A.

4. Holomorphic extensions and positive definite funetions

Let S be any topological space. By 9,(S) we shall denote the class of all continuous
hermitian symmetric functions:

K:8x8-C
which satsfies the relation:
(1) ')’Zzl K(.Z‘;, Ij)a{iflszo
for any choice of m points 3, ..., 2,&S and complex numbers aj, ..., ¢,. A function K
in D,(S) is called a positive definite function of order m. A positive definite function
on § is then defined as a positive definite function of all orders m=1, 2,.... The class

of all positive definite functions on S is denoted by 9(S).
It is well-known [1] that any positive definite function K€P(S) determines a
Hilbert space H(S) uniquely and enjoys the following properties:
(a) K(x,y)=Ky(x) reproduces all fe H(S), i.e.,
fla)={f, K (z€S8),

where {, > denotes the inner product in H(S).
(b) There exists a complete orthonormal system {p,}.2; such that

@ K(z,9) =1 0u(@g,3)-

Conversely, it is easy to see that if a sequence of functions {p,} is given on § with
the propety:

®) 5 lou(@) 1)<oo (zE8),
then the function

@ K@»=5 0.®5,()
belongs to 9(S).
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A positive definite function Ke9(S) which reproduces a Hilbert space H(S) is
called the kernel function for the Hilbert space. In particular, if § is replaced by a
complete circular domain De® with Bergman-Shilov boundary B and the kernel K
by the Szegd kernel S(s,5), then its associated Hilbert space is the Hardy space
H*D).

To prove Theorem B we need the following preparatory lemma which is a complex
version of the main lemma in [7]. For completeness sake we give a proof of this
lemma here. See also [2].

LEMMA 3. Let Q be an open set in C* and let K : QX 0—C be a C2 Junction which
belongs to the class Doy () 1<m=<n). Then the (2m+1) X (2m—+1) matriz

/K 0, K 7Y S OmK o,nK
9;:K  8,0,0K 8,10.K...... 0,0.,K 8.0, ,K
. 0,K 030, K 8,00, K i
(5) Moms1(u, v)= : : : :
3K . . .
\OuK GO Koeeiereervvann, OOy K 0y K ) .
is positive definite at every (z,5) QX 0, where PREDY ujk—aﬂ*, 0f=3 ujk—a—z— and
J=1 Zj ~j
b, vt (k=1,2,...... sm,1<m<n) are vectors in R™.

Proof. Let (2,5)€QxQ be a fixed point with r=x+if, s=y+iy for some z,& 9,7
in R". Applying the main lemma of [7] to K at (2,8)=0z,8), (5 ERX, we
can construct the following (2m+1) X (2m+1) positive definite matrix

K 7oK 7K. FomkK 7oK J

FK PP K i, ol K
6) Mypi1= V“;IK

7K -

P K 7P Koo ol oK.

where wf= (1}, ..., u,% 0...0)
4=00,...,0, ust, ..., %)
v= vk L 0,50, ...0)
VA= (0, ..., 0, v14, ..., v,8)

and

4 5 * 0K

VukK_fzjl uj 8;rj

V“kK:i ujt oK

@) s 0

| & E oK

i VkahjZJl IJ ayj

i oK

— k.
\ Vka_j}:—-;:l vj aﬁj

are evaluated at ((z,&), (v,7)).
Let Bjnii be an invertible (2m+1) X (2m+1) matrix of the form:
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1 Qeereerernnes 0
(8) B=Bam1= O 2 0
Qreveereenens 0 Jp)

i
and hence Mo, is positive definite.

where JZZB _ljl A straight forward calculation shows that BM,,.1B*=Maps; (4, v)

Using Lemma 3, we can prove Theorem B.

Proof of Theorem B. We consider the case where f:Q-—-C is in C? and apply
Lemma 3 to the function Ky defined by (3), §1, withm=1 and w/=vi=ei=(6:)1cicn,
7=1,2,...n, where ¢;7=1 for i=j, =0 for i#j. Then

(K 0 9K
0§j as,-
| K 32K 2K
(9) AMB(EJ’ 81)— ﬁzj Bzﬁs‘j aZjaSj
oK 0°K 2°K
N 621- aZjaS'j szasj

is positive definite at every point (z,5) €Q2xQ for all j=1,2,...,7. A simple computation
leads to

0K _ 1 . of
5z, 2 op(n ) G
oK _ 1 . of
aSj ——Z“SD(Z, S)a—sj

10 3K _ 1 aSp(z3) of
aSjBZJ B 2 aZj ~6751_
K
()ijSj -

Since the matrix M;(ed, ¢/) is positive definite, we have
?K 9K 0K
6sz5,~ afj aSj
Evaluating (11) at (z,2)€QXQ, we have

(11) KX >0.

(12) %Soz(z, 2) ﬁ —aa-f? f2§o,

0

which implies B{- =0 for all j=1,2,...,n, since Sp(z, 2)>0 on 2xQ. Therefore, f
“~J

is holomrophic in €. To complete the proof of the theorem, we need to consider the
case where f is merely continuous on £. It can be done as follows. If f is locally
integrable on Q then for each €0 there exists a smooth function f,€C=(Q). If in
addition f is continuous in @ then lirgl Je=f uniformiy on compact subsets of . Since

the property of a function being in 93(Q) is additive and positively homogeneous,
both Kp(z, 5 and K§’(z, 5)=Sp(z, s L@L;M belong to 93(Q). Therefore,

fe€C~(2) is holomorphic in Q@ by the previous result. By the uniform convergence, f,
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too, is holomorphic on Q. This completes the proof.

We shall call a set MCD a set of uniqueness (for holomorphic functions on D)
whenever a function f holomorphic in D vanishes on M vanishes everywhere in D.

For example, any non-empty open subset of a simply connected domain G in C7 is
a set of uniqueness for holomorphic functions in G for #n>>1, while in € a set with an
accumulation point is enough to be a set of uniqueness for holomorphic functions
defined in a simply connected domain containing the set and an accumulation point.

Theorem C is contained in the following slightly more general theorem.

THEOREM C'. Let M be a set of uniqueness of D in which the function f: M—C is
holomorphic with values in Re f>0. If Re f has a real analytic extension to D and

if Ky(z,$5)=Sp(z, j)w, z, SEM, is positive definite in M, i.e., KysP (M),

then f admits a holomorphic extension F : D—C with values in Re F>(.
Furthermore, let H(M) and H(D) be the Hilbert spaces associated with Ky and

Kp(z §)=Sp(z, -LERTFG)

5 . Then there is a natural isometry between these Hilbert
spaces.

Proof. Since Kp(z,§) is positive definite and holomorphic in (z,§) EMXM*, M*=
{z: 2eM}, there exists a Hilbert space H(M) of holomorphic functions on M. Let
H(M) be the subspace of H(M) consisting of all finite linear combinations of the
form:

(13) u(=) :"é:JajKM(Z, ;) for s;e M,

where J denotes a finite index set. Since Re f(z) has a real analytic extension to D,
so does the function Kp(z, £)=Sp(z, 2) Re f(z). By a result of [13], Kp(z, 5) has a
unique holomorphic extension to Kp(z,5), (2, §)€DxD* and KpecP (D). Let H(D)
be the Hilbert space associated with Kp and H(D) the subspace of H(D) determined
by exactly the same linear combinations as for the space H(M). Then

(14) leell p2 =<, wp p= <,-.§ a;My (2, 5;), kZE:JakKM {2, 80) >
:”Zc Jajdl:KM(sj; Si) = luel] 2

Therefore, a function in H(M) admits a holomorphic extension to a function in H(D)
having the same norm. On the other hand, the collection of functions K,=Kp(-,3),
s&M, spans a linear subspace of H(D) which is dense in that space, In fact, if f&
H(M) is orthogonal to all such K,, s&M, then f(s)=<{f, K,y=0 for all s€M.

Since M is a set of uniqueness, f(s)=0 in D. Therefore, H(M) is dense in H({D)
as well as in H(M). Thus, there is a natural isometry between H (M) and H(D).
Now it remains to show that Re F>0 for all FEH(D). But it is immediate from the
fact that Re F(2)=Kp((z,2) - Sp(z, 2)! and Kp(z, ) >0 for all zeD.

Proof of Theorem D. The sufficiency has already been proven in Theorem C’. The
necessity follows easily from the integral representation in Theorem A. Suppose that
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F: D—C is holomorphic with Re F>0. Consider the function K, : DXxD—C defined
by

K5 =Sp(s, 9 LrOEFG)

for r€(0,1). For any positive integer n, let 2\,..2"€D and ay, ..., a,&C. Then
15 3 K@ Ham=2 (Re F, S8.0am=1al 5 «;8(2/,8) I"Re F,(®)do0.
Jok= k= i=

Since (15) holds for all r&(0,1) and K,.(z,5) is a continuous function of 7 for all
fixed 2 and 5 in D, it follows that

2 K&, 2H a0
Jo k=1

for all integers n, i.e., K is positive definite in D and, hence in M.
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