Bull. Korean Math. Soc Vol. 20, No. 1, 1983

HOLOMORPHIC FUNCTIONS WITH POSITIVE REAL PART ON COMPLETE CIRCULAR DOMAINS

Dedicated to the Memory of Professor Dock Sang Rim

KYONG T. HAHN*

1. Introduction

The main purpose of the present paper is to generalize the results obtained by A. Hindmarsh in [7] to the holomorphic functions with non-negative real part defined on a complete circular domain D in certain class \mathcal{D} in the complex euclidean space C^n . As described in § 2, \mathcal{D} includes the bounded symmetric domains. More precisely, we prove the following.

THEOREM A. A function $f: D \rightarrow \mathbb{C}$, $D \in \mathcal{D}$, is holomorphic with non-negative real part if and only if it admits an integral representation of the form:

- (1) $f(z) = i \text{ Im } f(0) + \int_{B} [2S_{D}(z, \bar{b}) 1] d\mu(b), z \in D,$
- with a positive measure μ on the Bergman-Shilov boundary B such that
 - (2) $\int_B g d\mu = 0$

for all $g \in QL^2(B)^{\perp}$ where $S_D(z, \bar{s})$ denotes the Szegö Kernel of D and the description of $QL^2(B)$ is given in § 2.

THEOREM B. Let Ω be a non-empty open subset of $D \in \mathcal{D}$. If $f: \Omega \to \mathbb{C}$ is a continuous function with non-negative real part and if the function $K: \Omega \times \Omega \to \mathbb{C}$, given by

(3)
$$K_{\Omega}(z,\bar{s}) = S_D(z,\bar{s}) \frac{f(z) + \overline{f(\bar{s})}}{2}, z, s \in \Omega,$$

belongs to the class $P_3(\Omega)$, see §4 for definition, then f is holomorphic in Ω .

THEOREM C. Let $f: \Omega \to \mathbb{C}$ be given as in Theorem B. If in addition $K_{\Omega} \in \mathcal{D}_m(\Omega)$ for all m=1, 2, ..., and if Re f has a real analytic extension to D, then f admits a holomorphic extension $F: D \to \mathbb{C}$ with non-negative real part.

Combining Theorem A and Theorem C, we obtain

THEOREM D. Let $M \subset D$ be a set of uniqueness for holomorphic functions in D, and let $f: M \to C$ be a holomorphic function which admits a real analytic extension to D. Then f admits a holomorphic extension $F: D \to C$ with non-negative real part if and only if $K_M(z, \bar{s}) = S_D(z, \bar{s}) \cdot \frac{f(z) + \overline{f(s)}}{2}$ is positive definite on M.

^{*}partially supported by NSF MCS 80-02915

Theorem A generalizes the well-known classical Riesz-Herglotz integral representation theorem for holomorphic functions to a complete circular domain $D \in \mathcal{D}$; this theorem is needed in the proof of Theorem D. A similar generalization has been given in [10] for polydisks.

Theorem B is a direct generalization of a remarkable result of A. Hindmarsh [7] in which he proves: If f is a continuous function in a domain D of the upper half plane in \mathbb{C}^1 with Im $f \geq 0$ and if $f \in \mathcal{P}_3(D)$ then f is holomorphic in D. It should be remarked that Theorem B still holds true under more general setting. It is easy to see that the proof of Theorem B goes through for continuous functions f defined on any open subset Ω of \mathbb{C}^n , provided that there is a continuous positive definite function $K: \Omega \times \Omega \to \mathbb{C}$ which is holomorphic and $K(z, z) \neq 0$ in $\Omega \times \Omega^*$, $\Omega^* = \{z : z \in \Omega\}$. A similar result has been obtained by J. Burbea [2].

Thoerem C may be regarded as a generalization of (2) of [7], although it is considerably weaker. The existence of a real analytic extension of Re f is assumed in obtaining Theorem C. It is clear that Theorem C can be strengthed to a simply connected domain D in which there exists a positive definite function $K: D \times D \rightarrow C$, holomorphic and $K(z, z) \neq 0$ in $D \times D^*$.

It is intereting to see if Theorems C and D can still be proved without assuming the existence of a real analytic extension of f to $D \in \mathcal{D}$. It is answered affirmatively for polydisks in [10].

2. Definitions and preliminaries

Let D be a bounded circular domain with the Bergman Shilov boundary B in the space C^n of n complex variables $z=(z_1,...,z_n)$ which is complete with respect to the origin $0 \in D$. D is circular if $z \in D$ implies $ze^{i\theta} \in D$ for $\theta \in [0,2\pi]$, and complete with respect to $0 \in D$ if $z \in \overline{D}$ implies $rz \in D$ for $r \in [0,1)$. Assume that D admits the group G of holomorphic automorphisms. Then each $g \in G$ carries B into itself. In particular, B is invariant under the stability group $K = \{k \in G : k(0) = 0\}$. Clearly, B is circular whenever D is. If K acts transitively on B, kB = B for every $k \in K$ and also gB = B for $g \in G$. As is well-known [3], K acts by unitary transformations. Consequently, B has a unique normalized K-invariant measure $d\sigma = V^{-1}db$, where db denotes the euclidean volume element at $b \in B$ and V the euclidean volume of B [9], [11].

By \mathcal{D} we shall denote the class of all the complete bounded circular domains described above. The bounded symmetric domains form an important subclass of \mathcal{D} . Conversely, if any $D \in \mathcal{D}$ that admits a transitive group of holomorphic automorphisms is a bounded symmetric domain [12]. In this paper we shall consider only domains D in the class \mathcal{D} , unless specified otherwise.

It is well-known [8] that there exists on B a complete orthonormal system of continuous functions. Let Z_{kv} denote the monomial $z_1^{v_1}...z_n^{v_n}$, $k=v_1+...+v_n$, k=0, $1,2,...,v=1,2,...,m_k=\binom{n+k-1}{k}$. From the set $\{Z_{kv}\}$ we can construct a system $\Phi_0=\{\varphi_{kv}\}$, $v=1,2,...,m_k$, k=0,1,2,..., of homogeneous polynomials which is complete and orthogonal on D, and orthonormal on B. See [8]. The Szegő kernel of D is defined by the infinite series:

(1)
$$S(z,\bar{s}) = \sum_{k=0}^{\infty} \sum_{v=1}^{n_k k} \varphi_{kv}(z) \overline{\varphi_{kv}(s)}$$

which converges uniformly on compact subsets of $D \times \bar{D}$. Therefore, $S(z, \bar{s})$ is holomorphic in $z \in D$ and antiholomorphic in $s \in D$, and continuous on $D \times \bar{D}$. Since $\varphi_{kv}(z)$ is homogeneous of order k, for each $v=1,2,...,m_k$, $\varphi_{kv}(z)=\varphi_{kv}(b)r^k$ if z=rb for some $b \in B$ and $0 \le r < 1$. Therefore, for $b,b' \in B$,

(2)
$$S(rb', \bar{b}) = \overline{S(rb, \bar{b}')}.$$

The Poisson kernel of D is defined by

(3)
$$P(z,b) = \frac{|S(z,b)|^2}{S(z,z)} (z \in D, b \in B).$$

Any holomorphic function f on D has a Fourier series expansion:

(4a)
$$f(z) = \sum_{k} a_{kv}(f) \varphi_{kv}(z),$$

where

(4b)
$$a_{kv}(f) = \lim_{r \to 1} \int_B f(rb) \ \overline{\varphi_{kv}(b)} d\sigma \equiv \lim_{r \to 1} (f_r, \varphi_{kv}),$$

which converges uniformly on compact subsets of D. Furthermore, we have

LEMMA 1. ([5], [6]) Let $H^p(D)$ $(p \ge 1)$ denote the usual Hardy space on D. If f is in the space $H^p(D)$ with the boundary value f^* on B, defined by $f^*(b) = \lim_{r \to 1} f(rb)$, $b \in B$. Then f has both a Cauchy integral refresentation

(5)
$$f(z) = \int_{B} S(z, \bar{b}) f^{*}(b) d\sigma \equiv (f^{*}, S_{z})$$

and a Poisson integral representation

(6)
$$f(z) = \int_B P(z, \bar{b}) f^*(b) d\sigma \equiv (f^*, P_z)$$

for $z \in D$. Furthermore, if

$$H^{p}(B) = \{ \tilde{f} \in L^{p}(B) \, : \, (\tilde{f}, S_{z}) = \tilde{f}, P_{z}) \}$$

then $H^p(B)$ is a closed subspace of $L^p(B)$ which is isometrically isomorphic to $H^p(D)$. If f^* is the boundary value of $f \in H^p(D)$, then $f^* = \tilde{f}$ a.e. on B.

It should be remarked that the system Φ_0 is not complete in the space C(B) of continuous functions in general. However, according to H. Weyl [14], it is possible to extend Φ_0 to a complete orthonormal system of C(B) by adding some system of functions $\Phi_1 = \{\varphi_{-k} : k=1, 2, ...\}$. Let $\Phi = \Phi_0 \cup \Phi_1$ be such a system. By letting $\varphi_k = \varphi_{k0}$ for negative k=-1, -2, ..., we can denote

(7)
$$\Phi = \{ \varphi_{kv} : k = 0, \pm 1, \pm 2, ...; 1 \le v \le m_k \text{ for } k \ge 0; v = 0 \text{ for } k < 0 \}.$$
 Let

$$T^2(B) = \{ \tilde{f} \in L^2(B) : a_{kv}(\tilde{f}) = 0, \text{ for } k \le 0 \}.$$

It is easy to see that $T^2(B)$ is a closed subspace of $L^2(B)$ which is isometrically isomorphic to $H^2(D)$ under the correspondence

(8a)
$$\tau: T^2(B) \rightarrow H^2(D),$$

given by

(8b)
$$\tau(\tilde{f}) = \sum_{k,v} a_{kv}(\tilde{f}) \varphi_{kv}(z) \equiv f(z).$$

If f^* is the boundary value of f, then $f^*=\tilde{f}$ a.e. on B. Namely, $T^2(B)$ may be identified with $H^2(B)$. See [6].

We also denote by H(B) the class of all functions, holomorphic in D and continuous in $D \cup B$. Define the projections P, \bar{P} and Q in $L^2(B)$ by

$$P: L^2(B) \to H^2(B)$$

 $\bar{P}: L^2(B) \to \bar{H}^2(B) = \{ f \in L^2(B) : \bar{f} \in H^2(B) \}$

and

$$Q: L^{2}(B) \rightarrow \operatorname{Span}_{C} \{H^{2}(B), \bar{H}^{2}(B)\}$$

Then the space $QL^2(B)$ is the complex subspace spanned by the real parts of $H^2(B)$. If $f \in H(B)$ then clearly $f \in PL^2(B)$, $\bar{f} \in \bar{P}L^2(B)$ and $\bar{P}f(0) = f(0)$.

3. Integral Representation theorem of the Riesz-Herglotz type

In the following lemma we shall list further properties of the Szegö kernel $S(z, \bar{s})$ for later purposes.

LEMMA 2. (1^0) $S(z, \bar{s}) = \overline{S(s, \bar{z})}$ for $z, \bar{s} \in D$, $S(z, \bar{z}) > 0$ for $z \in D$ and S(z, 0) = 1 for $z \in D \cup B$.

(20) The function S_s defined by $S_s(z) = S(z, \bar{s})$ belongs to the class H(B) for each $s \in D$ and reproduces functions $f \in H(B)$ by

(1a)
$$f(z) = (f, S_z)$$
 $(z \in D)$.

In particular,

(1b)
$$\int_B S(z, \bar{b}) d\sigma \equiv (1, S_z) = 1$$
.

(30) If
$$f \in H(B)$$
, then

(2a)
$$\bar{f}(0) = (\bar{f}, S_z) \ (z \in D)$$

(2b) Re f(0) = (Re f, 1),

and

(2c)
$$f(z) = i \text{ Im } f(0) + (\text{Re } f, 2S_z - 1) \ (z \in D),$$

(4⁰) $If f \in H(B), for z, s \in D,$

(3a)
$$S(z, \bar{s}) f(z) = (f, S_z \bar{S}_s)$$

(3b) (Re
$$f, S_z \bar{S}_s$$
) = $S(z, \bar{s}) \frac{f(z) + \overline{f(s)}}{2}$

and

(3c) (Im
$$f$$
, $S_z \bar{S}_s$) = $S(z, \bar{s}) \frac{f(z) - \overline{f(s)}}{2i}$.

(5°) For
$$z, s \in D$$
,

(4a)
$$P(S_z\bar{S}_s) = S(s,\bar{z})S_z$$

(4b)
$$\vec{P}(S_z \vec{S}_s) = S(s, z) \vec{S}_s$$

and

(4c)
$$Q(S_z\bar{S}_s) = S(s, \bar{z})(S_z + \bar{S}_s - 1)$$
.

Proof. Properties (1⁰) and (2⁰) are evident. (3⁰) Since P is a projection of $L^2(B)$ onto $H^2(B)$, $PS_z=S_z$ and $P^2=P$. This together with (1b) implies (2a):

$$(\bar{f}, S_z) = (\bar{f}, PS_z) = (P\bar{f}, S_z) = (\overline{f(0)}, S_z) = \overline{f(0)} (1, S_z) = \overline{f(0)}.$$

Equality (2b) follows by adding

$$f(0) = (f, S_0) = (f, 1)$$

and its complex conjugate.

Adding (1a) and (2a), we have

$$f(z) = -\text{Re} f(0) + i \, \text{Im} f(0) + (2\text{Re } f, S_z).$$

This together with (2b) implies (2c).

(40) For each $s \in D$, $S_s f \in H(B)$. Applying (1a) to $S_s f$, we have

$$S(z, \hat{s}) f(z) = (S_s f, S_z) = (f, S_z S_s).$$

Taking the complex conjugate to the expression obtained from (3a) by exchanging the roles of z and s we also obtain

$$S(z,\bar{s})\overline{f(s)} = (\bar{f}, S_z\bar{S}_s).$$

Adding and subtracting these two relations, we have both relations (3b) and (3c), respectively.

(5°) If $f \in H(B)$, by (1a),

$$(f, S(s, z)S_z) = \overline{S(s, \bar{z})}(f, S_z) = S(z, \bar{s})f(z).$$

This relation and (3a) together imply

$$(f, S_z \overline{S}_s) = (f, S(s, \overline{z}) S_z)$$

for all $f \in H(B)$. Since $S(s,z)S_z \in H(B)$, (4a) follows. A similar proof can be given for (4b). Relations (3b) and (2c) yield

(Re
$$f, S_z \bar{S}_s$$
) = (Re $f, S(s, \bar{z}) (S_z + \bar{S}_s - 1)$).

Since $\{\text{Re } f: f \in H^2(B)\}$ spans $QL^2(B)$ and $S_z + S_z - 1 \in QL^2(B)$, the assertion (4c) follows.

Lemma 2 leads to the proof of Theorem A.

Proof of Theorem A. Suppose that $f: D \to C$ is a holomorphic function with non-negative real part in D. Then for $r \in (0,1)$ the function $f_r, f_r(z) = f(rz)$, is continuous and holomorphic in \overline{D} . By (3°) of Lemma 2,

$$f_r(z) = i \operatorname{Im} f_r(0) + \int_B [2S(z, \bar{b}) - 1] d\mu_r(b),$$

where

$$d\mu_r(b) = \operatorname{Re} f_r(b) d\sigma$$

is a positive measure on B. Clearly, we have

$$\int_{B}g(b)d\mu_{r}(b)=0$$

for all $g \in (QL^2)^{\perp}(B)$ and the total variation of μ_r is bounded as $r \to 1$. In fact,

(5)
$$\int_{B} d\mu_{r}(b) = \int_{B} [2S(0, b) - 1] \operatorname{Re} f_{r}(b) d\sigma$$

= $\operatorname{Re} f_{r}(0) = \operatorname{Re} f(0)$.

By Helly's selection theorem, $\{\mu_r(b)\}$ has a subsequence which converges everywhere on B to $\mu(b)$ of bounded variations such that

$$\lim_{r\to 1} f_r(z) = i \operatorname{Im} f(0) + \int_B [2S(z,\bar{b}) - 1] d\mu(b),$$

as desired.

Conversely, if f is defined as in (1) of §1, then it is holomorphic in D, since $S(z,\bar{s})$ is holomorphic in $z \in D$ and continuous in \bar{D} . Therefore, it remains to show that Re $f \ge 0$. If $f \in L^2(B)$ has an absolutely and uniformly convergent series expansion in terms of the complete system Φ .

Then by (2) of § 1,

(6)
$$\int_{B} (Qf)(b) d\mu(b) = \int_{B} f(b) d\mu(b)$$
,

and (6) is satisfied by the function $f=S_zS_z$, that is,

(7)
$$\int_{B}Q(S_{z}\tilde{S}_{z})(b)d\mu(b) = \int_{B}(S_{z}\tilde{S}_{z})(b)d\mu(b)$$
.

Taking the real part of (1), § 1, we have

Re
$$f(z) = \int_{B} [S(z, \overline{b}) + \overline{S(z, \overline{b})} - 1] d\mu(b)$$

 $= S(z, \overline{z})^{-1} \int_{B} Q(S_{z} \overline{S}_{z}) (b) d\mu(b)$, by (4c).
 $= S(z, \overline{z})^{-1} \int_{B} (S_{z} \overline{S}_{z}) (b) d\mu(b)$, by (7).
 $= S(z, \overline{z})^{-1} \int_{B} |S(z, \overline{b})|^{2} d\mu(b) > 0$,

completing the proof of Theorem A.

4. Holomorphic extensions and positive definite functions

Let S be any topological space. By $\mathcal{D}_m(S)$ we shall denote the class of all continuous hermitian symmetric functions:

$$K: S \times S \rightarrow C$$

which satsfies the relation:

(1)
$$\sum_{i,j=1}^{m} K(x_i, x_j) \alpha_i \bar{\alpha}_j \ge 0$$

for any choice of m points $x_1, ..., x_m \in S$ and complex numbers $\alpha_1, ..., \alpha_m$. A function K in $\mathcal{D}_m(S)$ is called a *positive definite function of order* m. A *positive definite function* on S is then defined as a positive definite function of all orders m=1, 2, The class of all positive definite functions on S is denoted by $\mathcal{D}(S)$.

It is well-known [1] that any positive definite function $K \in \mathcal{D}(S)$ determines a Hilbert space H(S) uniquely and enjoys the following properties:

(a) K(x, y) = Ky(x) reproduces all $f \in H(S)$, i.e.,

$$f(x) = \langle f, K_x \rangle \ (x \in S),$$

where \langle , \rangle denotes the inner product in H(S).

(b) There exists a complete orthonormal system $\{\varphi_v\}_{v=1}^{\infty}$ such that

(2)
$$K(x, y) = \sum_{v=1}^{\infty} \varphi_v(x) \overline{\varphi_v(y)}$$
.

Conversely, it is easy to see that if a sequence of functions $\{\varphi_v\}$ is given on S with the property:

(3)
$$\sum_{v=1}^{\infty} |\varphi_v(x)|^2 < \infty \ (x \in S),$$

then the function

(4)
$$K(x, y) = \sum_{v=1}^{\infty} \varphi_v(x) \overline{\varphi_v(y)}$$

belongs to $\mathcal{D}(S)$.

A positive definite function $K \in \mathcal{D}(S)$ which reproduces a Hilbert space H(S) is called the kernel function for the Hilbert space. In particular, if S is replaced by a complete circular domain $D \in \mathcal{D}$ with Bergman-Shilov boundary B and the kernel K by the Szegő kernel $S(z, \hat{s})$, then its associated Hilbert space is the Hardy space $H^2(D)$.

To prove Theorem B we need the following preparatory lemma which is a complex version of the main lemma in [7]. For completeness sake we give a proof of this lemma here. See also [2].

LEMMA 3. Let Ω be an open set in \mathbb{C}^n and let $K: \Omega \times \Omega \to \mathbb{C}$ be a \mathbb{C}^2 function which belongs to the class $\mathcal{P}_{2m+1}(\Omega)$ $(1 \le m \le n)$. Then the $(2m+1) \times (2m+1)$ matrix

$$(5) \quad \widetilde{M}_{2m+1}(u,v) \equiv \begin{pmatrix} K & \widetilde{\partial}_{v}{}^{1}K & \partial_{v}{}^{1}k & \dots & \widetilde{\partial}_{v}{}^{m}K & \partial_{v}{}^{m}K \\ \partial_{u}{}^{1}K & \partial_{u}{}^{1}\widetilde{\partial}_{v}{}^{1}K & \partial_{u}{}^{1}\partial_{v}{}^{1}K & \dots & \partial_{u}{}^{1}\widetilde{\partial}_{v}{}^{m}K & \partial_{u}{}^{1}\partial_{v}{}^{m}K \\ \widetilde{\partial}_{u}{}^{1}K & \widetilde{\partial}_{u}{}^{1}\widetilde{\partial}_{v}{}^{1}K & \widetilde{\partial}_{u}{}^{1}\partial_{v}{}^{1}K & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \partial_{u}{}^{m}K & \widetilde{\partial}_{u}{}^{m}\widetilde{\partial}_{v}{}^{1}K & \dots & \ddots & \vdots \\ \widetilde{\partial}_{u}{}^{m}K & \widetilde{\partial}_{u}{}^{m}\widetilde{\partial}_{v}{}^{1}K & \dots & \dots & \widetilde{\partial}_{u}{}^{m}\widetilde{\partial}_{v}{}^{m}K & \widetilde{\partial}_{u}{}^{m}\partial_{v}{}^{m}K \end{pmatrix}$$

is positive definite at every $(z,s) \in \Omega \times \Omega$, where $\partial_u^k = \sum_{j=1}^n u_j^k - \frac{\partial}{\partial z_j}$, $\partial_u^k = \sum_j u_j^k - \frac{\partial}{\partial z_j}$ and $u^k, v^k (k=1, 2, \dots, m, 1 \le m \le n)$ are vectors in \mathbb{R}^n .

Proof. Let $(z,s) \in \Omega \times \Omega$ be a fixed point with $z=x+i\xi$, $s=y+i\eta$ for some x,ξ,y,η in \mathbb{R}^n . Applying the main lemma of [7] to K at $(z,s)=((x,\xi),(y,\eta))\in\Omega\times\Omega$, we can construct the following $(2m+1)\times(2m+1)$ positive definite matrix

in construct the following
$$(2m+1) \times (2m+1)$$
 positive definite
$$(6) \ M_{2m+1} = \begin{pmatrix} K & \nabla_{v}^{1}K & \nabla_{v}^{1}K & \cdots & \nabla_{vm}K & \nabla_{vm}K \\ \nabla_{u}^{1}K & \nabla_{u}^{1}\nabla_{v}^{1}K & \cdots & \cdots & \nabla_{u}^{1}\nabla_{vm}K \\ \nabla_{\mu}^{1}K & \vdots & \vdots & \ddots & \vdots \\ \nabla_{um}K & \nabla_{um}\nabla_{v}^{1}K & \cdots & \cdots & \nabla_{\mu}\nabla_{vm}K. \end{pmatrix}$$

where
$$u^{k} = (u_{1}^{k}, ..., u_{n}^{k}, 0...0)$$

 $\mu^{k} = (0, ..., 0, u_{1}^{k}, ..., u_{n}^{k})$
 $v^{k} = (v_{1}^{k}, ..., v_{n}^{k}, 0, ...0)$
 $\nu^{k} = (0, ..., 0, v_{1}^{k}, ..., v_{n}^{k})$

and

(7)
$$\begin{pmatrix} \nabla_{uk} K = \sum_{j=1}^{n} u_{j}^{k} \frac{\partial K}{\partial x_{j}} \\ \nabla_{uk} K = \sum_{j=1}^{n} u_{j}^{k} \frac{\partial K}{\partial \xi_{j}} \\ \nabla_{vk} K = \sum_{j=1}^{n} v_{j}^{k} \frac{\partial K}{\partial y_{j}} \\ \nabla_{vk} K = \sum_{j=1}^{n} v_{j}^{k} \frac{\partial K}{\partial \eta_{j}} \end{pmatrix}$$

are evaluated at $((x, \xi), (y, \eta))$.

Let B_{2m+1} be an invertible $(2m+1)\times (2m+1)$ matrix of the form:

(8)
$$B=B_{2m+1}=\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & J_2 & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 & J_2 \end{pmatrix}$$

where $J_2 = \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix}$. A straight forward calculation shows that $BM_{2m+1}B^* = \tilde{M}_{2m+1}(u, v)$ and hence \tilde{M}_{2m+1} is positive definite.

Using Lemma 3, we can prove Theorem B.

Proof of Theorem B. We consider the case where $f: \mathcal{Q} \rightarrow C$ is in C^2 and apply Lemma 3 to the function $K_{\mathcal{Q}}$ defined by (3), § 1, with m=1 and $u^j=v^j=e^j=(\delta_i j)_{1\leq i\leq n}$, j=1,2,...n, where $\delta_j i=1$ for i=j, =0 for $i\neq j$. Then

$$(9) \quad \tilde{M}_{3}(e^{j}, e^{j}) = \begin{pmatrix} K & \frac{\partial K}{\partial \bar{s}_{j}} & \frac{\partial K}{\partial s_{j}} \\ \frac{\partial K}{\partial z_{j}} & \frac{\partial^{2}K}{\partial z_{j}\partial \bar{s}_{j}} & \frac{\partial^{2}K}{\partial z_{j}\partial s_{j}} \\ \frac{\partial K}{\partial \bar{z}_{j}} & \frac{\partial^{2}K}{\partial z_{j}\partial \bar{s}_{j}} & \frac{\partial^{2}K}{\partial z_{j}\partial s_{j}} \end{pmatrix}$$

is positive definite at every point $(z, s) \in \Omega \times \Omega$ for all j=1, 2, ..., n. A simple computation leads to

$$\frac{\frac{\partial K}{\partial z_{j}} = \frac{1}{2} S_{D}(z, \bar{s}) \frac{\partial f}{\partial \bar{z}_{j}}}{\frac{\partial K}{\partial s_{j}} = \frac{1}{2} S_{D}(z, \bar{s}) \frac{\partial \bar{f}}{\partial s_{j}}}$$

$$\frac{\partial K}{\partial s_{j}} = \frac{1}{2} S_{D}(z, \bar{s}) \frac{\partial \bar{f}}{\partial s_{j}}$$

$$\frac{\partial^{2} K}{\partial s_{j} \partial s_{j}} = \frac{1}{2} \frac{\partial S_{D}(z, \bar{s})}{\partial z_{j}} \frac{\partial \bar{f}}{\partial s_{j}}$$

$$\frac{\partial^{2} K}{\partial z_{j} \partial s_{j}} = 0.$$

Since the matrix $\tilde{M}_3(e^j,e^j)$ is positive definite, we have

(11)
$$K = \frac{\partial^2 K}{\partial z_j \partial s_j} - \frac{\partial K}{\partial z_j} = \frac{\partial K}{\partial s_j} = \frac{\partial K}{\partial s_j} \ge 0.$$

Evaluating (11) at $(z, z) \in \Omega \times \Omega$, we have

(12)
$$\frac{1}{4}S_D^2(z,\bar{z})\left|\frac{\partial f}{\partial \bar{z}_i}\right|^2 \leq 0,$$

which implies $\frac{\partial f}{\partial z_j} = 0$ for all j = 1, 2, ..., n, since $S_D(z, \bar{z}) > 0$ on $\Omega \times \Omega$. Therefore, f is holomrophic in Ω . To complete the proof of the theorem, we need to consider the case where f is merely continuous on Ω . It can be done as follows. If f is locally integrable on Ω then for each $\epsilon > 0$ there exists a smooth function $f_{\epsilon} \in C^{\infty}(\Omega)$. If in addition f is continuous in Ω then $\lim_{\epsilon \to 0} f_{\epsilon} = f$ uniformly on compact subsets of Ω . Since the property of a function being in $\mathcal{D}_3(\Omega)$ is additive and positively homogeneous, both $K_D(z,\bar{s})$ and $K_D^{(c)}(z,\bar{s}) = S_D(z,\bar{s}) \frac{f_{\epsilon}(z) + \overline{f_{\epsilon}(s)}}{2}$ belong to $\mathcal{D}_3(\Omega)$. Therefore, $f_{\epsilon} \in C^{\infty}(\Omega)$ is holomorphic in Ω by the previous result. By the uniform convergence, f,

too, is holomorphic on Ω . This completes the proof.

We shall call a set $M \subset D$ a set of uniqueness (for holomorphic functions on D) whenever a function f holomorphic in D vanishes on M vanishes everywhere in D.

For example, any non-empty open subset of a simply connected domain G in C^n is a set of uniqueness for holomorphic functions in G for n>1, while in C a set with an accumulation point is enough to be a set of uniqueness for holomorphic functions defined in a simply connected domain containing the set and an accumulation point.

Theorem C is contained in the following slightly more general theorem.

THEOREM C'. Let M be a set of uniqueness of D in which the function $f: M \rightarrow \mathbb{C}$ is holomorphic with values in Re $f \ge 0$. If Re f has a real analytic extension to D and if $K_M(z, \tilde{s}) = S_D(z, \tilde{s}) \frac{f(z) + \overline{f(s)}}{2}$, $z, s \in M$, is positive definite in M, i.e., $K_M \in \mathcal{D}(M)$, then f admits a holomorphic extension $F: D \rightarrow \mathbb{C}$ with values in Re $F \ge 0$.

Furthermore, let H(M) and H(D) be the Hilbert spaces associated with K_M and $K_D(z, \dot{s}) = S_D(z, \dot{s}) \cdot \frac{F(z) + \overline{F(s)}}{2}$. Then there is a natural isometry between these Hilbert spaces.

Proof. Since $K_M(z, \bar{s})$ is positive definite and holomorphic in $(z, \bar{s}) \in M \times M^*$, $M^* = \{\bar{z} : z \in M\}$, there exists a Hilbert space H(M) of holomorphic functions on M. Let $\tilde{H}(M)$ be the subspace of H(M) consisting of all finite linear combinations of the form:

(13)
$$u(z) = \sum_{i \in I} a_i K_M(z, \bar{s}_i)$$
 for $s_i \in M$,

where J denotes a finite index set. Since Re f(z) has a real analytic extension to D, so does the function $K_M(z,\bar{z}) = S_D(z,\bar{z})$ Re f(z). By a result of [13], $K_M(z,\bar{s})$ has a unique holomorphic extension to $K_D(z,\bar{s})$, $(z,\bar{s}) \in D \times D^*$, and $K_D \in \mathcal{P}(D)$. Let H(D) be the Hilbert space associated with K_D and $\tilde{H}(D)$ the subspace of H(D) determined by exactly the same linear combinations as for the space $\tilde{H}(M)$. Then

(14)
$$||u||_{D}^{2} = \langle u, u \rangle_{D} = \langle \sum_{j \in J} a_{j} M_{M}(z, s_{j}), \sum_{k \in J} a_{k} K_{M}(z, s_{k}) \rangle$$

$$= \sum_{j,k \in J} a_{j} \bar{a}_{k} K_{M}(s_{j}, \bar{s}_{k}) = ||u||_{M}^{2}.$$

Therefore, a function in $\widetilde{H}(M)$ admits a holomorphic extension to a function in $\widetilde{H}(D)$ having the same norm. On the other hand, the collection of functions $K_s = K_D(\cdot, s)$, $s \in M$, spans a linear subspace of H(D) which is dense in that space, In fact, if $f \in H(M)$ is orthogonal to all such K_s , $s \in M$, then $f(s) = \langle f, K_s \rangle = 0$ for all $s \in M$.

Since M is a set of uniqueness, $f(s)\equiv 0$ in D. Therefore, $\widetilde{H}(M)$ is dense in H(D) as well as in H(M). Thus, there is a natural isometry between H(M) and H(D). Now it remains to show that Re $F\geq 0$ for all $F\in H(D)$. But it is immediate from the fact that Re $F(z)=K_D((z,z)\cdot S_D(z,z)^{-1}$ and $K_D(z,z)\geq 0$ for all $z\in D$.

Proof of Theorem D. The sufficiency has already been proven in Theorem C'. The necessity follows easily from the integral representation in Theorem A. Suppose that

 $F: D \rightarrow C$ is holomorphic with Re $F \ge 0$. Consider the function $K_r: D \times D \rightarrow C$ defined by

$$K_r(z, \bar{s}) = S_D(z, \bar{s}) \frac{F_r(z) + \overline{F_r(s)}}{2}$$

for $r \in (0, 1)$. For any positive integer n, let $z^1, ..., z^n \in D$ and $\alpha_1, ..., \alpha_n \in C$. Then

Since (15) holds for all $r \in (0,1)$ and $K_r(z,s)$ is a continuous function of r for all fixed z and s in D, it follows that

$$\sum\limits_{j,k=1}^{n}K(z^{j},z^{k})\,lpha_{j}ar{lpha}_{k}\!\geq\!0$$

for all integers n, i.e., K is positive definite in D and, hence in M.

References

- N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (19 80), 337-404.
- 2. J. Burbea, Operator-valued Pick's condition and holomorphy. Preprint.
- 3. H. Cartan, Les fonctions de deux variables complexes et le problème de la représentation analytique, J. Math. Pures Appl. (9) 10 (1931), 1-114.
- W.F. Donoghue, Jr., Reproducing kernel spaces and analytic continuation, Rocky Mount. Jour. Math. 10 (1980), 85-97.
- 5. K.T. Hahn, Properties of holomorphic functions of bounded characteristic on Star-shaped circular domains, J. Reine Angew. Math. 254 (1972), 33-40.
- K. T. Hahn and J. Mitchell, H^p spaces on bounded symmetric domains, Ann. Polon. Math. XXVIII (1973), 89-95.
- A. Hindmarsh, Pick's conditions and analyticity, Pacific J. Math., 27 (1968), 527-531.
- 8. L.K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Transl. Math. Monog. 6, Amer. Math. Soc., Providence, R.I., 1963.
- 9. A. Korányi, The Poisson integral for generalized half-planes and bounded symmetric domains Ann. Math. 82 (1965), 332-350.
- A. Korányi and L. Pukánsky, Holomorphic functions with positive real part on polycylinders, Trans. Amer. Math. Soc. 108 (1963), 449-456.
- 11. A. Korányi and J. A. Wolf, Realization of hermitian symmetric spaces as generalized half-planes, Ann. Math. 81 (1965), 265-288.
- J. Mitchell and K.T. Hahn, Representation of linear functionals in H^p spaces over bounded symmetric domains in C^N, Jour. Math. Analysis and Appl. 56 (19 76), 379-396.
- 13. M. Skwarezyński, A continuation theorem for holomorphic mappings into a Hilbert space, Ann. Polon. Math. XXIII (1970), 281-284.

14. H. Weyl, Harmonics on homogeneous manifolds, Ann. Math. 35 (1934), 486-499.

Department of Mathematics Pennsylvania State University University Park, Pennsylvania 16802 U.S.A.