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1. Introduction

Our investigation stems from the (r,s)-mutation of an associative algebra which
originates from Santilli’s generalization of classical and quantum mechanics. Santilli
has introduced a time evolution law

—z%:i(xrh—hsx) (1)
as a generalization of the conventional Heisenberg equation, where % is a Hamiltonian
and r, s are fixed invertible operators on a Hilbert space. Let A be an associative
algebra with multiplication xy. The right side of the equation (1) leads to introduce
a genuine nonassociative product

I ® Yy=Zry—ysx @

on the vector space A. The resulting algebra has been called the (r, s)-mutation of A
and denoted by A(r,s).

The (r,s)-mutation A(r,s) of an associative algebra is Lie-admissible in the sense
that the algebra A(r,s)” with the commutator product [z,y]¥=a*y-—-y*x is a Lie
algebra, that is, A(r,s)” satisfies the Jacobi identity

(L, p1%, 23%+ [y, 2%, 2]*+ [[&, 1%, y]*=0. 6))
The structure of A(r,s) has been investigated by a number of authors [5,6,7, 8].

In this paper we extend the (r,s)-mutation of an associative algebra to an alternative
algebra A and prove some basic structure theorems for A(r,s). An algebra A is called
alternative if it satisfies a weak associativity

z(xy) =2% and yz’=(yx)x
for all z,yeA. A Cayley-Dickson algebra is a well known alternative algebra that is
not associative. Let a be a fixed element of an alternative algebra A with product xy.
Define a product z « y by
z - y={(za)y

on the vector space A. The resulting algebra, denoted by A“, is called the (left)
a-homotope of A[3]. A right a~homotope is similarly defined. If A has a unity 1 and
a is invertible, A® is called the (left) a—isotope of A. It is shown [3] that if A is
alternative then every homotope of A is alternative also. Following the relation (2),
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we define the (left) (r, s)-mutation A(r,s5) of A as the algebra with product
zHy=(2r)y—(y8)z @
defined on the vector space A, where 7 and s are fixed elements in A. Note that if
4 is associative then (4) reduces to ®.
The (r, s)~mutation A(r,s) of an alternative algebra is not in genreal Lie-admissible
but Malcev-admissible in the sense that the minus algebra A(r,s)~ with product
[z,y]*=x%y—y+ 2z is a Malcev algebra, namely, A(r,s)" satisfies the Malcev identity

(L, ¥3%, [, 2]*]*=[[[z, ¥]*, 2]*, 2%+ [[Ly, 21%, 2]*, 2J*+ [[ [z, 2]*, 2]*, ¥]*. (5)
Since any Lie algebra is a Malcev algebra, the (r,s)-mutation A(r,s) can be utilized
for a possible generalization of Santilli’s mechanics as well as octonionic mechanics.

2. A generalization of the (r, 8)-mutation

Following Myung [4], an algebra B is termed Malcev-admissible if the minus algebra
B~ is a Malcev algebra, that is, the commutator [z, y]=xy — yx satisfies the identity
(5). It is well known that any Lie-admissible and alternative algebra are Malcev-ad-
missible and that a Cayley-Dickson algebra of characteristic#3 is Malcev-admissible
but not Lie-admissible (see 4.

Let A be a vector space over a field F and let S be a bilinear mapping: Ax A— A,
Denote by A(f) the algebra with multiplication f(z,y) defined on the vector space
A. We can also define a skew symmetric bilinear mapping f~: AXA—A by

f—(xl y) =f<xa y) ——f(yr x)-
Clearly, A(f)-=A(f-). If the algebra A(f) is Lie-admissible or Malcev-admissible
then we call f Lie-admissible or Malcev—-admissible. Let f and g be fixed bilinear

mappings : AXA—A. Using f and g, we define a new product x o y on the vector space
A by

zoy=f(z,5) —g(y ). 6
Denote by Ay, the algebra with product zoy. The (r,s)-mutation A(r,s) defined by
(4) is a special case of Ay, g where f(x,y)=(zr)y and g(z, y) = (zs)9.
Let f and g be Malcev-admissible. We give a condition that the algebra A;, is
Malcev-admissible in terms of a 2-cocycle. Let A and # be bilinear mappings : AX A—
A. We define quadra-linear mappings # Ak and A[Jh: AXAXAXA—A by

kAR (z,5,2,0)=k(k(h(z,9),2),) +E(h(E(z, ), 2), 1) +h(E(E(z, y), 2), £), )
ROk (z,3,2,)=k(h(z,9), k(z, ) +kk(z,9), h(z, ) +h(k(z, ), k(z, 1)) ®
for z,y,2,tcA.

If Mis a Malcev algebra with product [z, ¥], then following general bimodule

theory ([2, p. 93]), a skew-symmetric bilinear mapping & : MXM—M is called a 2-
cocycle of M if A satisfies the identity

kAR (2, 9,2,2)+ (kAR (3,2, 2,2) + (R AR) (2,2, 2,9) + (1 B) (2, 2, 2, ) =0 (9)
for z,y,z&M, where k(z,y)=[z,y]. Let B be a Malcev-admissible algebra. As for a
Lie-admissible algebra [5], it can be shown that a bilinear mapping A : BXB—B is a

2-cocycle of B if and only if A~ is a 2-cocycle of B~. We use this to give a condition
that the algebra A, , is Malcev-admissible for fixed Malcev—admissible bilinear mappings
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fie.

THECREM 1. Let A be a vector space and let f, g be Malcev-admissible bilinear
mappings : AXA—A. Then the algebra Ay, defined by (6) is Malcev—admissible if
and only if f and g satisfy

(et @z +{fe) (212

el Gaann+ (O +g OF) (x,2 2,5) =0 10
Jor z,y,2€A, where {f~,g7)=f"Ag +g A S In particular, if f and g are 2-
cocycles of A(g) and A(f) respectively, then Ay, . is Malcev-admissible.

Proof. Denote [z, y]=z o y—yox. Then [z,y]=Ff(z, Mg ) —f(y,2)+g(z,y) =
S~ (x,3) +g (z,3). Using this, we compute

Lz, 9], 2], 2]=F~(f(f (2, ),2),2)+(f~A g +g A ) (x, 9,2 1)
+g (g7 (g7 (x, 9), 2), 2),

([, 2, 23, 21=f~(f (T (0,0, 0, D+ (F~A g+ A f) (p, 2, z, r)
+e (g7 (g (3, 2),2), 2),

[z 2], 2], y]=f~(f(f7 (2 2), 0, N+ (fTA g +8 A F) (2, 1, 2, )
+e (g7 (g7 (z,2),2), 9

Lz, 2], [z, 9] 1=/~ (f (@ 2), [ (2, 9) +(fDe +e 0F) (5,2, 7, )

+8 (g7 (z,2), g7 (z, ).

Adding these four equations, we have that the sum of terms involving only f- or
g~ on the right sides is zero, since f and g are Malcev-admissible. The remaining
terms add to the left side of (10). Therefore, the Malcev identity in Ay, .~ is equivalent
to the identity (10). If f and g are 2-cocycles of A(g) and A(f) then (9) holds for
S~ and g7, and this gives (10).

REMARK. If f and g are Lie-admissible then it can be similarly shown that Af . is
Lie-admissible if and only if f and g are 2-cocycles of A(g) and A(S), respectively.
That is, Ay, is Lie-admissible if and only if f~(g™(z, ), 2) +f~ (& (3,2),2)+f (g~
(2,2), 9+~ (f (2, 9),2) +&~(f"(9,2),2) +27(f~(2,2),5) =0 holds for all z, y, ze
A.

3. The (r, s)-mutation of an alternative algebra

We focus on the (left) (-, s)-mutation A(r,s) of an alternative algebra A, Thus
the product x*y in A(r,s) is given by (4). Denote the associator and commutator in
A(r,s) by

(Z, 3, 0)*=(z*y) +z—x* (y*2),
[z, y]*=xxy—y+x
It follows from (4) that
Lz, y]*=(zr)y~ (ys) x— (yr)z+ (x5)y
=[z(r+s)]y—[y(r+s)]x, an

(@, 3, 2)*=[(zr)y—(y)z] * z2—z * [(yr) 2 — (25) 5]

=L@y rle— [y x)rlz— (2s) [(xr) y]+ (z5) [(ys) 2]

— (@r) [(yr) 2]+ (zr) [(z) y]1+ [ ((yr) 2) s]x— [ ((2s) y) 5] 2. (12
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Since the (#+s)~homotope AU is alternative and A(r,s) =A%t~ A(r,s) is
Malcev-admissible. Also, the Jordan product {z,y}*=2x % y+y=*x is given by

{z, }*=[z(r—s)Iy+[y(r—s)]x. 13
Hence A(r,s)"= A" 9% where A(r, s)* denotes the algebra with product {z, y} * defined
on the vector space A(r,s). Since any alternative algebra is Jordan-admissible, this
implies that A(r,s) is Jordan-admissible also.

Define the commutative center K(A), the nucleus N(A) and the center Z(A) of A
by K{(A)={reA|[x, A]=0}, NA)={zcA|(4, 4, 12)=(4,z, A)= (2,4, A)=0} and
Z(A)=K(A)NN(A), where [z, y]=zy—yx and (z,y,2)=(zy)z—x(yz). If r and s are
in N(A) then the left and right (r,s)-mutations of A coincide.

As for the (r, s)-mutation of an associative algebra [5,6,8], we investigate other
identities satisfied by A(r,s) which are not consequences of Malcev-admissibility and
Jordan-admissibility. Two identities which are useful in the study of nonassociative
algebras are the flexible identity,

(rxy) xx=a* (y*a). (14)
and the third power identity,

(zxz)xx=z* (x*2x) (15)
which is implied by flexibility. With the exception of Malcev-admissibility and Jordan-
admissiblity, the identity (15) is implied by virtually all the identities which are
considered in nonassociative algebras. In fact, Osborn [8] has shown that if A is an
associative algebra of characteristic #2,3 and r, s are invertible then (15) in A(r, s)
implies most of the well known nonassociative identities. We prove the same result
for an alternative algebra, when one of » and s is invertible in N(A).

To state our result, we need some definitions. A nonassociative algebra B is called
power—associative if the subalgebra of B generated by every element in B is associative.
We also call B generalized quasi-alternative if, up to isomorphism, it arises from an
alternative algebra A under the product z*y=azy+Syxr for some fixed a, 5 in the
center Z(A4) of A. Thus, B~A(a, —f). If @ and B are just scalars then B is called
quasi-alternative. It is easy to check that any generalized quasi-alternative algebra is
both flexible and power-associative.

Let A be an alternative algebra over a field F. Recall Moufang identities in A:

(aba)x=alblax)], (16)
x(aba) ={(za)b]a, 17
alxy)a=(ax) (ya). (18)

Hence, using (17) and (18), we have
L{ar)y)rla=[x(ryr) Ja= (zr) [(yr)z].
L((@s)y)sla=[x(sys) Ja= (zs) [(ys) ].
Substituting these in the relation (12) with 2=z, we get
(z, 3, )%= {ar) [(z)y]+ [((yr)2)s]z
—[((ys)x)r]e— (xs) [(ar)y]. )

Thus, if s=ar for some a in the center Z(A) then (19) implies the flexible identity
(x,y,2)*=0 in A(r,ar). Also, A(r, ar) is power-associative and the nth power z*" in
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A(r,ar) is given by z*=(1—a)*! x(rx)* 1. This follows from Artin’s theorem that
the subalgebra of A generated by any two elements is associative. Therefore, we can
state

THECREM 2. Let r be a fired element in an alternative algebra A and let a be in the
center Z(A) of A. Then A(r,ar) is both flexible and power—associative.

If A is associative and r, s are invertible then it is shown in [8] that the converse
of Theorem 2 is true. We prove the converse of Theorem 2 for an alternative algebra
in the following theorem.

THEOREM 3. Let A be an alternative algebra with unity 1 over a field F of
characteristic#2,3. Let r and s be fixed elements of A such that one of r and s is
invertible in the nucleus N(A) of A. Then the following properties for the (left)
(r, s)—mutation A(r,s) are equivalent:

(2) A(r,s) satisfies the third power identity,

(i) A(r,s) is flexible,

(itt) A(r,s) is power—-associative,

(iv) A(r,s) is generalized quasi-alternative,

(v) s=ar or r=as for some element o in the center Z(A),

(vi) A(r,s)=AQ, B) or A(r,s)=A(B,1) for some element [3 in the center Z(A).

Proof. We may assume that r is invertible in N(A). We have already noted the
implications (iv)> ()= (@{) and (iv)=>({ii) = (@G). The implication (vi)=(iv) is obvious.
Assume (v) holds. Since r€N(A), the mapping z—ar™! is an isomorphism of A to
A®, Thus we have the isomorphism A(r,5) ~A® (1, —a) =A(1, —a), since zxy=zry
—ayrx. Letting 8==—«, we have established (vi). Therefore, it remains to show
that (1) implies (v).

Assume (i) holds. Setting y=x in (19), we have

(z, 2, ) *= (ar) (xsz) + [ (arz) s]z— [ (xsz) r]a — (xs) (zrx)

=2(ar) (xsx) —2(xs) (zrz) =0,

using Moufang identity (17). This gives
(ar) (xsx) = (xs) (zrzx)
and replacing = by z+1, the terms involving z are
xrs+ras+rsr=xsr+srr+srz, (20)

since r is in N(A). The special case 2=1 in (20) gives sr=rs and hence r~ls=s1.
Using this, (20) reduces to sxr=rzs for all z&A. Since r is invertible in the nucleus
N(A), from this we have (+"ls)z=z(sr1) for all ze€A. Thus, sr'€K(A), the
commutative center of A. Since 3K(A) S N(A) for any alternative algebra [9, p. 136]
and the characteristic is not 3, we have s#™! in N(A) and hence sr-'€Z(A). Letting
a=r"ls=g71, we have established (v). The result can be similarly proved for the
case where s is invertible in N(A).

REMARK. (1) In most cases of interest, the center Z(A) of the algebra A consists
of scalar multiples of unity 1. This is the case when A is simple over F. In this
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case, if r is invertible in N(A) then s is invertible in N(A) also. A generalized
quasi-alternative algebra derived from A is quasi-alternative.

(2) Unlike the associative case, an isotope A® of an alternative algebra A is not
in general isomorphic to A unless a is in N(A4). However, it is shown that, in a
finite-dimensional simple alternative algebra A over F, any isotopes of A are isomorphic.
The same result is true without the simplicity of A, if F is algebraically closed [3].

We can prove Theorem 3 under a slightly different condition that r-+s or r—s is
invertible in N(A). Thus, assume that s is invertible in N(A). Let p=(r+s)"1r.
Since 7+s€N(A), as for the associative case [6, p. 310], it can be shown that the
mapping f : z—z(r+s)~! is an isomorphism of A(p,1—p) to A(r, 5). Suppose A(r,s)
is third power-associative. Then, by Artin’s theorem, the identity (z,z, £)*=0 in
A(p, 1—p) reduces to xpz®—x%px=0. Replacing z by 1+2z(A€F) in this, we get 0=
A(zp—px) + A2 (2?p— pa®) + A (2%pz—zpa?) for all AEF. This gives zp=px for all zc
A and hence p is in K(A). Further, assume that 4 is simple over F of characteristic
#2,3. As in the proof of Theorem 3, we have p in Z(A). Since Z(4) is a field,
letting @a=p= (r+s5)"', we have s=(1—a)a~lr and hence r and s are invertible in
A. If r—s is invertible then we set g=(r—s)~'s and, as above, the mapping: z—
z(r—s)~!is an isomorphism of A(g,q—1) to A(r,s). Then the identity (z, z, z)*=0 in
A(g,¢—1) again implies that ¢ is in the center Z(A). Therfore, we have

THEOREM 4. Let A be a simple alternative algebra of characteristic +#2,3. Let r and
s be fixed elements of A such that r+s or r—s is invertible in N(A). Then r and s
are tnvertible in A, and the properties (i) — (iv) in Theorem 3 and

(v) s=ar for some invertible a in the center Z(A),

(vi)" A(r,s) =A(1, ) for some invertible B in the center Z(A),
are all equivalent.

For one final remark on the equation (1) of Santilli, let A be a real or complex
alternative algebra where the exponential function e* is definable for all zeA. Let r
and s be fixed elements in the nucleus N(A). Then the solution of (1) is given by

x(t) :e—ith:x (0) eitrh. (21)
To show that the rigt side of (21) is well defined, it suffices to verify that the
subalgebra of A generated by ks, z(0) and rk is associative. Since r and s are in
N(A), (hsz) (rk) =[(k(sx))rlh=[h (szr) Jh=h(szr) h=(hs) (x(rR)), by Moufang identity.
Thus the associator (hr, z,7k) =0 and this implies that the subalgebra of A generated
by ks, z,rh is associative [1].
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