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1. Introduction.

Let F=(E, p, B) be an orientable Hurewicz fibering with a regular lifting function
A, where E, B, and p7!(b), 6B, are compact, connected, metric ANR’s. A fibering
is orientable if the translation map 7 : p~1(5) —»p~1(8), defined by z(e)=A(e,w) (1)
for every loop w at & in B, is homotopic to the identity. If f: E—E is a fiber-pre-
serving map then f induces a continuous map f : B—B such that pf=fp and a conti-
nuous map f; : p7H(8)—p"1(b) for each b= B defined by fi(e) =A(f(e),w) (1), where
w is a path from f(8) to & in B. The triple (f, f, f3) : F—F is called a fiber-preserving
map triple. It is known that the Nielsen number, N(f;), of the map f; is independent
of the choice of paths w from f(5) to & and points 4 in B([2] and [7]). It is well
known that the Lefschetz numbers of the maps involved satisfy the relation L(f)=
L(f) - L(fs), b=B. However the corresponding result for Nielsen numbers is false as
shown in [4] and [15]. If the spaces involved in & satisfy the Jiang condition, that
is, the Jiang subgroup J(X) is equal to the fundamental group =;(X, z;), hence the
fundamental groups are abelian, then there is a complete solution to the problem of
product relation between Nielsen numbers of a fiber-preserving map tirple, [15] and
[16]. That is, if L(f)#0 then there is an invariant P(f) such that N(f) - P(f)=
N(f) - N(fs) for a locally trivial fibering & and a fiber-preserving map triple (f, f, f5)
: F-F, ([15]. If the fundamental groups of the spaces involved are not abelian,
then there are only partial solutions to the product theorem. These can be found in:
[2], [4], [6]. [8],[14] and [16]. In this paper, we assume that a fiber-preserving map
f 1 E—E has the non—zero Lefschetz number. Therefore, there is an essential fixed
point class of f.

We choose a point 2E€E in an essential fixed point class of f and p(2,) EB as the
base points of E and B respectively. Then we will omit the base points in the sequel
for the fundamental groups since the spaces are all path connected.

The purpose of this paper is to prove the above theorem for a Hurewicz fibering and
to eliminate the Jiang conditon from the above theorem as much as possible. Now the
new theorem reads that for an orientable Hurewicz fibering &F=(E, p, B) and a fiber-
preserving map triple (f, f,f3) : F-»F, if 7 (E) is abelian and (Lf)+0, and if the
fibers satisfy the Jiang condition, then there is an invariant P depending on f such
that N(f) - P=N(f) - N(f3).In this case, the fundamental groups are abelian. There-
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fore, our theorem generalizes theorems in [13] and [15]. )

We also prove a similar theorem for an eventually abelian fiber-preserving map. In
{12, p.61], Kiang defines an eventually abelian map to be a map f: E—E such that
the image of the induced homomrphism f* for some positive integer n becomes an
abelian subgroup of 7;(E), where fu*=f......f, n times, (see alse [9]).

Kiang [12: p.62] shows that if f: E—E is eventually abelian, then the Reidemeister
classes of f has one to one conespondence with Hy(E)/(1—f1.) (H(E)), ie.,
R(f)=0rd (Hi(E)/(1—f1s) (H{E)), where Hi(E) is the first integral homology
group and 1 indicates the identity hcmomorphism of H, ().

We note that, in general, R(f)>0Ord (H, (EY/ (1—f1e) (Hi(E)). We also note that
if there are two positive integers m, n such that fo (7 (E)) Cfa*(J(f)), then f s
eventually abelian and hense R(f)=0rd (H, (E)/(1—fix) (H (E)), [11], where J(f)
is the Jiang subgroup of the map f. In general the Nielsen number N(f) is less than
or equal to the Reidemeister number R(f). However, if J(f)=m(E), then N(f)
=R(f), [11.

You [16] made a remark that the product relation N(f)P(f)=N(F) - N(f;) for a
fiber-preserving map triple would hold if both S and f; are eventually abelian. We
prove that if the inclusion map i : p71(5) CE induces a monomrphism iy : 7 (p71(8))
—r1(E) and if f is eventually abelian, then both F and f, are also eventually abelian.
This fact then gives a very simple proof of the product theorem for:the Nielsen numbers
of an eventually abelian fiber-preserving map triple.

"In section 2, we study on algebraic notions of Reidemeister classes of the group, and
present our proofs of the theorems in section 3 for the case when the fundamental groups
are abelian, and in section 4 for the case when [ is eventually abelian. In section 5,
we examine a general case when the spaces involved are aspherical.

We are heavily depended on [17, 723, [6], and [9], so that interested readers are
referred to these articles for more information.

2. On the Reidemeister homomorphisms

Let A : G—G be a homomorphism on a group G into itself. Two elements a and 5
are said to be A-equivalent if there exists an element &G such that a=08h(07Yy. This
is an equivalence relation on G and divides G into equivalence classes G =G/~ =
{lad}, the cardinality of this set is called the Reidemeister number of A on G, and it
is denoted by R(h). If G is an abelian group then we define the addition in G’ by
la]+[B]=[a+p3] for elements “a] and [8] in G'.

It is not so hard to show that this is a well defined operation and G° becomes an
abelian group, in fact, G’ is isomorphic to the cokernel of id. —% : G5G.

Let 2 : H~H be an another homomorphism on a group H. If i : H-G is a homo-
morphism such that ¢4’ =4 then 7 induces % : H' - defined by i#*([a]) =[ia]. It is
casy to see that if a and § are A'~equivalent then ia and i8 are h-equivalent. Thus
¥ is well defined and we have the following lemmas. ‘ ‘

LimmA 2.1, If H and G are abelian groups then i% : H'—(G' is a homomorphism.

LEMMA 2.2, If h:G—G, K : H-H and i: H-G are homomorphisms of abelian
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groups such that hi=ik', and if there exists a homomorphism j : G—H such that ji=
ide and B j=jh, then i¥ : H >G' is a monomorphism.

Proof. 1f [a], [B] are elements in H’ such that i#([a]) =i%([8]) then ia and 73 are
h-equivalent, i.e., there exists an element 6EG such that ia=8+if—h(d). This implies
that jia=i6-+jif—ih(6) and a=id+F—~kj(0), and j(3) €H. Therefore @ and 8 are
h-equivalent. (See Proposition (2.1) in [14])

LEMMA 2.3. If & :G—G, K : H-H are homomorphisms of abelian groups and if
i: H>G is an isomorphism such that ki=ik’ then i¥ : H'-»G' is also an isomorphism.
This follows from Lemma 2.2.

LEMMA 2.4. If H is a subgroup of an abelian group G and k' is the restriction to H
of a homomorphism b : G—G and i+ HCG is the inclusion satisfying hi=idy and h(G)
CH, then i* : H' -G is a monomorphism. This also follows from Lemma 2. 2.

Now we relate the essential Nielsen fized point classes’ and Reidemeister classes. Let
f 1 X—X be a continuous map on a compact, connected, metric ANR X into itself, such
that L(f)=+0. This implies that there exists at least one essential fixed point class. Let
O(F) =z X|f(2) =z} and denote the essential Nielsen fixed point classes of f by 9" (f).
Let fu: 1 (X)—m (X) be the induced map and = (X) denote the corresponding set of
Reidemeister equivalence classes of fx. We need the following proposition from [1: p.
104].

PROPOSITION 2.5. There is an injective map ¢ : ¢ (f)—n (X).

3. On the fiber-preserving maps

Let = (E, p, B) be an orientable Hurewicz fibering where E, B, and p'(8),4<B,
are compact, connected, metric ANR’s, and (f, £, fs) : F—F be a fiber-preserving map
triple defined in the introduction.

We assume L(f)+#0 and all the fundamental groups of spaces involved -are abelian.
The fiber homotopy exact sequence induces the following commutative diagram:

a 1.;. P#
o7y (B) = m (p71(0)) =7y (E) =7 (B) =0
L fe ! fos L fe L fe

~

0 iz Py
oy (B) =7y (p71(B) ) —my (E) — 7y (B) -0

Without loss of generality we may assume 8€®(f) and then fy=f[p"1(6). From
Lemma (2.1) the homomorphism s : 7 (p71(8))—7,(E) induces a homomorphism
i#* ) (p~1(d))—m’ (E). Denote P(f)=order of ker i¥.

We state here two propositions which are due to Brown and Fadell.

PROPOSITION 3.1. (Brown [2]). Let F=(E, p,B) be a locally trivial fibering with
B and fibrers finite polyhedra. Let (f,f,fs) :+ F—F be a fiber-preserving map triple as
béfore. Let Fg be a fixed point class of f and let Fp be the fized point class of . f
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containing p(Fg). For each beFpy, let Fy., Fy,..., F,, be the fized point classes for Fir=
Flo-14) contained in (Fxnp=1(b)).

Then (1) i(F)=i(Fp) - (Li(F.),

@) if p(Fp) &S Fg, then i(F,,)=0,1<n<%, and so i(Fg)=0, where i( )
denotes the fixed point index.

This is a generalization of Brown’s results in (2 : p. 92-93] because his proof requires.
only that the base and all fibers are finite polyhedra, and because FzNp~!(5) contains
k distinct fixed point classes of the map f.

PropostTION 3.2. (Fadell, [6],[7]). Let F= (E,p,B) be an orientable Hurewicz
Jfibering such that the spaces involved are compact, connected, metric ANR’s, and let
(AFfp) : F—F be a Sfiber-preserving map triple. Then there exists a locally trivial
Sfbering F = (E', p', B') with both the base space and the fiber finite polyhedra and with
a fiber-preserving map triple (f, f', ') : F—F such that N(f)=N(f"),N(f)=N(f")
and N(f)) =N(fy). Furthermore, if mi(E) is abelian then 7,(E') is also abelian and
if fibers of T satisfy the Jiang condition then fibers of F also satisfy the Jiang con-
dition.

The last part of the proposition follows from the construction of the locally trivial
fibering & because E’' is homotopic to EX T* and the fiber of F s homotopic to
?271(5) X T, where T* is the n~dimensional torus.

Now we state our main theorem in this section.

THEOREM 3.3. Let = (E, £, B) be an orientable Hurewicz fibering where E, B, and
718, bEB, are compact, connected, metric ANR’s. Let (f, Fofs) : F0F be a fiber-
preserving map triple such that L(f)+#(Q. I f 7(E) is abelian and if fibers satisfy the
Jiang condition the then there is a number P such that

N(f) - P(f)=N(f) - N(fy), beB.
We note that the number P should be same as P(f)=oder of Ker i#, defined in the
begining of the section. However, we do not claim this Sfact here.

Proof. We consider the locally trivial fibering F'=(p', E', B') with the base B’ and
the fiber finite polyhedra, which corresponds to the fibering F=(p, E, B) according
to Proposition (3.2).

Then 7;(E’) is abelian and the fiber satisfies the Jiang condition and there exists at
least one essential Nielsen fixed point class of Sf’. This also follows from the construction
of the locally trivial fibering in Proposition (3.2). For each element F of the essential
Nielsen fixed point classes of £/, ¢ (f"). if p'"1(6) NF#¢ we map the Nielsen classes
of fi' in p'"1(B) NF to F. This induces a map from &' (f4') to @' (f’). From Proposition
(2.5) this map decomposes

1:1 i% 11
(fy) — 2/ (P1B)) z T (E) «— & (f).
Since the fiber satisfies the Jiang condition, & (f3')—x, (#'~1(8)) is one to one and
onto. Thus the number of Nielsen classes of f¢' in p"1(6) N F which mapped to F is
exactly the order of ker(i'#). We see that this number is independent of the choice
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of the class FE®' (f’) since % is a homomorphism. Since there exists at least one
essential Nielsen fixed point class of f’ and the fiber is a Jiang space, each essential
Nielsen class of f' contains exactly P(f’) essential Nielsen classes of f', when FN
P71 (&) #¢, by the equation (1) of Proposition (3.1). It also follows from the same
proposition that for each essential Nielsen fixed point class F of f’, p(F) in B is an
essential Nielsen fixed point class of f' in B'. Thus over each essential Nielsen fixed
point class of 7’ in B’ there lies precisely N(fy')/P(f’) essential Nielsen fixed point
classes of f’, so since f’ has N(f’) essential classes

N(f)=N(f") - N(fy')/P(f'). We apply Proposition (3.2) to obtain the formula
N(f) - P=N(f)N(Sfs), b€B, where P=P(f’').

The above theorem together with Lemmas (2.2),(2.3), and (2.4) imply the
following:

COROLLARY 3.4. We have the product relation N(f)=N{(f) - N(fs),bEB, in each
of the following cases:
(D) ix 2 m(p71(8)) > (E) is monic and fu(m1(E)) Cig(m (p71(B)) and falismo e
=identity.
(2) 7 (B)=0=m(B)
(3) 0—m (p7L(d)) —t¥m  (E)—*%n,(B)—0 splits and splitting is natural with respect
to the homomorphism fe.
) m(p71(B))=0.
We note that the example in [4] shows that the hypothesis of iz a monomorphism
in the corollary can not be omitted.
Now we give an example of a calculation of the Nielsen number of a map which
would not be possible without Theorem (3. 3).

ExAMPLE 3.5. We consider the principal circle bundles over the 2-dimensional real
projective space RP(2). The even dimensional real projective spaces are known to not
satisfy the Jiang condition. These bundles are orientable bundles and classified by
[RP(2),CP()]=H?*(RP(2),Z)=Z, So that we have total spaces, RP(2) XS! and
non-trivial one E. The product theorem for the Nielsen numbers of a fiber-preserving
map on the product spaces is covered in [3]. It is not hard to see that the fundamental
group of E is abelian and in fact it is isomorphic to Z. Thus the fiber homotopy exact
sequence becomes

0-—>Zi)Z——>Zz—>(),

Now we construct a ﬁber»preser\{ing map. Let us consider RP(2) as a disk D? with
antipodal points on the boundary D identified. Let d be an odd integer with |d|>1

and f: D?-D? be the map given by f(re®) =rei®, The fixed point set is ll;dl

passing through the center of D% Since f commutes with antipodal map on the
boundary f induces f : RP(2)—RP(2) with N(f)=1. Since the composition of maps
f and the classifying map is homotopic to a classifying map, f can be lifted to a
fiber-preserving map f: E—E. Then f, has degree d and N(f;) =|1~d| from [1].
From our Theorem (3.3) and [13] we have

lines
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NH :—-—N(Ifb) = =4 12;‘1' =]1—d|, where

[2,d]
T2,d] 1is the least common multiple of 2 and d.

Finally, we would like to make a reamrk when the fundamental groups of the spaces
in F=(E, p, B) are not necessarily abelian.

Let G be a group and g : G—G be a homomorphism as in section 2. Then the
Reidemeister classes G’ does not have a group structure. Even if the conditions in
lemmas in section 2 are satisfied, the cardinality of the inverse images of elements in
G’ under the map i* are not the same, where i* : H’—G’ induced by an homomorphism
i : H-G. Thus it would be interesting to find out under what conditions the cardinality
-of the inverse images of elements in G’ under the map i# are equal to 0 or the same
because if the cardinality of %" (a), where i# : 7,/ (p71(B)) —z/ (E), acr/(E), is 0
or a constant P then the statement

N(f) - P=N(F) - N{fy), beB, is still true.
4. Eventunally abelian maps

In this section, we consider the case when the fiber-preserving map f is eventually
abelian. First, we prove the following lemna.

LEMMA 4.1. Let F=(p, E, B) be an orientable Hurewicz fibering and (f, f, f3) be a
Sfiber-preserving map triple.

If the inclusion map i : p~1(8) GE induces a monomorphism iy : 7, (p71(6)) >z, (E) and
if f is eventually abelian, then f and f, are eventually abelian.

Proof. The fiber preserving map f : E—E induces the following commutative diagram,

s Pa
0 = m(p7HB) — 7(E) — =(B) — 0
| foa L fa L fe

ip P#
0 = m(p7H8) = m(E) - 7 (B) — 0.

First we show that f is eventually abelian by using the right hand side of the diagram.

The relation Py fe= fapy implies pg fe"= fape. Since the rows in the diagram are
-exact, for each a in 7,(E), there exists an element a'Ex, (E) such that pga’ =a.

Then we have fu"(a) fa"(B) =Fu"(ps0’) fo" (paf) =pafu (@) pafar (§)

=ps(f5*(a) - f"(B)) =pa(fu*(8) - fa"(a))
=pafd" () pefe" (@)= Fa"pu(8) - fepu(a)
= fe"(8) - fa(a).

Thus f4"(z1(B)) is an abelian subgroup of z;(B). We show now that fu is eventually
abelian by using the lift hand side of the diagram. The relation fuis=i. fi implies the
rela}tion f#"i#:i#fb#". _

Then we have, for a, S€x(p71(8)), ix(f1s” (@) fss" (B) =iz ( foe™(@B)) = furis (@f)
=f="(x(@) - i2(8)) =fu" (i2@) - fu" (12 (B)) =F"(ix () - fu (ix(@)) =F4"(ix (Ba))
=iz foa" (Ba) =iz (fo"(B) - fre"(a)) : ‘

Since iy is a monomorphism be have

CH (@ - [ (B) =S (B) - foe™(@) for a, fEx (p71(B)). Using the result, _we prove

-a product theorem for Nielsen numbers of a fiber-preserving map triple.
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THEOREM 4.2. Let p: E—B be an orientable Hurewicsz fibering with E, B, p71(d),
bE B connected, compact, metric ANR and (f, f, fs) be a fiber-preserving map triple.
If the inclusion map i: p~'(B)GE incluces a monomorphism iy : 71 (p71()) —m(E) and
if f is eventually abelian, then there is a constant P(f) such that N(f) - P(f)=
N(F) - N(fs). (Compare Theorem (4.10), IV '0f(9))

Proof. The inclusion map i: p~1(8)—E induces the following commutative diagram

H((0) — Hy(E)
4 o 1 fx

1x
H,(p7(b)) — Hi(E).
In turn, this diagram induces a homomorphism
i*: Hy(p71(8)) | A~ fos) Hi (p71(8)) —> HL (E) [ (1—f) (HL(E))

Since fp* is eventually abelian by Lemma (4.1), R(f3) =0Ord (H,(p71(8))/(1—fss)
Hi(p72(8))), [11], and R(f)=Hi(E)/ (1 —fs) (H:i(E)).

Therefore i* can be considered as a homomorphism between the Reidemeister classes
of f; and the Reidemeister classes of f.

Let @(f) and ©(f;) be the fixed point set of £ and f;, rtespectively, and @ (f)
and @' (f3) be the corresponding Nielsen fixed point classes. There are one—to-one into
maps ¢ : &' (f) »R(f;) and &' : &' (f)—R(f).

Thus we have
1:1 i* :1
D' (fs) T Hi(p71(8)) | A —Ffoa) (H1(p71(8))) — Hi(E) [ QA —f) (H1(E)) 17> ().

Let P(f) be the order of ker ¢*. This number is independent of the choice of Fe&
9 (f) such that p71(6) NF+¢ since i* is a homomorphism. Thus for each Fe®' (f),
P(f) ts the cardinality of ¢! i*71¢’' (F). That is, P(f) is the number of Nielsen
.classes of f3 in p71(6) NF, Since F is essential if and only if p(F) is essential in B,
there lies precisely N(f3)/P(f) essential fixed point clusses of f for each essential
class of f: Therfne, we have N(f)=N(f) - N(fs)/P(F), since f hus N(f) essential
fixed point classes and N(f) is independent of the cloice of b&B.

We note that in Theorem {(4.2) we may replace the condition that f is eventually
abelian by the condition that there exist two positive integers m,n such that fu"(z,

(E)) Cfa(J(f)), where J(f) is the Jiang subgroup of f.

5. On the equivariant maps

In this section, we prove a result that shows the conclusions of theorems (3.3) and
(4.2) may be true even though not all the hypothesis are satisfied, in particular, when
the fundamental group of the total space is non-abelian.

Let M be a compact, connected, orientable aspherical manifold with nop-abelian
fundamental group. If a compact, connected Lie group G acts effectively on "M, then
G has to be a total group T% [5]. Then the induced homomorphism ay : 7z (T* —
7%, (M) is a monomorphism and az(z;(T* lies in the center Z(mw (M)) of m;(M). Let
us denote the orbit space M/G by B and p : M—B be the projection map. It: is well
known that B is an aspherical manifold and = (M, p, B) become'a singular fibering
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with the fiber T% Let f: M—M be a fiber-preserving map. Then f induces 7 and f5 as
in the instruction such that pf= fp. Assume L(f)#0 and Sf# is onto. Then the center
Z(z(M)) is invariant under fs and ay induces a homomorphism a# : z,’ (T4 —
Z'(m(M))cr/ (M), and we have

1:1 at 1:1
() — ' (TH — Z (m(M)) Cr/ (M) «<— & (f).
Where a# is induced by a map which asign, for each Fe¢’ (), if T*NF+¢ the
Nielsen classes of f; in T*NF to F.
Thus, we have the following theorem using the argument used in the proofs of
Theorems (3.3) and (4.2)

THEOREM 5.1. Let (M,G) be a free action of a compact, connected Lie group G on
a compact, connected, orientable aspherical manifold.

Let f: M—M be a fiber-preserving map such that L(f)#0. Then there exists a
number P such that N(f) - P=N(f) - N(f3), bcB.

Note that the fundamental group =,(M) need not be an abelian group.

If the induces homomorphian fy : m (M) —n, (M) maps ©(M) into Z(m, (M)), then
the map between O' (f) and m,' (M) is one to one and onto. In this case Z'(m (M))
and 7' (M) have the same cardinality.

In a similar way, we can prove the following.

THEOREM 5.2. Let (M, T*) be a free action of the toral group T* on g« compact,
connected, orientable aspherical manifald M. Let f: M—M be an eventually abelian
Sfiber-preserving map with L(f)+0, and the inclusion map i : T"G M indue a monomor-
phism iz w1 (T") >z (M). Then there exists a number P(f) such that N(AHP(f)=
N(P) N(fy, beM/Tn.

In particular, if fu(m(M)) is an abelian subgroup of (M) and f. (zy(M))C
12 (z (T™), then i% is one to one, and hence P(f)=1. Therefore we have the product
relation N(f)=N(f) - N(f3).

We would like take this opportunity to say that Corollary (4.2) of [14] is incorrectly
stated. Therefore the Corollary (4.2) and the last sentence of Example (4.3) should
be omitted from the paper [14]. We thank Professor Bo-ju Jiang for pointing out this.
to us.
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