A NOTE ON "GENERALIZED ITERATION PROCESS"
BY T. HU AND G.-S. YANG

Sehie Park

In [1], T. Hu and G.-S. Yang obtained the following

Theorem. Suppose \(f \) is a continuous mapping which maps the closed interval \([0, 1]\) into itself, and \(A = (a_{nk}) \) is a stable iteration matrix, then for any \(x_1 \in [0, 1] \), the generalized iteration sequence \(\{v_n\} \) converges to a fixed point of \(f \) on \([0, 1]\).

Here, a stable iteration matrix \(A = (a_{nk}) \) is an infinite lower triangular matrix such that

1. \(a_{nk} \geq 0 \), \(\sum_{i=1}^{n} a_{nk} = 1 \),
2. \(\lim_{n \to \infty} a_{nn} = 0 \), \(\lim_{n \to \infty} a_{nk} = 0 \), \(k = 1, 2, \ldots \), and
3. \(a_{n+1,k} = (1-a_{n+1,n+1})a_{nk} \) for \(k = 1, 2, \ldots, n \)

and \(\{x_n\} \) and \(\{v_n\} \) are defined inductively by

\[
v_n = \sum_{k=1}^{n} a_{nk}x_k, \quad x_{n+1} = fv_n, \quad n = 1, 2, \ldots
\]

In this note, Theorem of Hu and Yang is actually a simple consequence of the following

Proposition ([3], Corollary 3.1). Let \(f \) be a continuous selfmap of a compact interval \(I \), and \(\{x_n\} \) a sequence in \(I \) such that \(v_{n+1} \in v_n(fv_n) \) for all \(n \in \mathbb{N} \). Then

1. \(v_n - v_{n+1} \to 0 \) iff \(\{v_n\} \) converges, and
2. \(v_n -fv_n \to 0 \) iff \(\{v_n\} \) converges to a fixed point of \(f \).

Here, \(-\) denotes the closed interval joining two points.

Note that the stable iteration matrix \(A = (a_{nk}) \) in Theorem is regular. Hence, \(A \) maps every convergent sequence into a convergent sequence with invariant limit in the sense that if \(x_k \to l \), then \(\sum_{i=1}^{n} a_{nk}x_k \to l \) (cf. [4]).

Proof of Theorem. Since \(|v_{n+1} - v_n| \leq a_{n+1,n+1} \to 0 \), \(\{v_n\} \) converges to some \(v_0 \in [0, 1] \) by Proposition (1). Therefore, \(x_k = f(v_{k-1}) \to fv_0 \) from the continuity of \(f \). Since \(A \) is regular, \(v_n = \sum_{k=1}^{n} a_{nk}x_k \to fv_0 \). Hence, \(v_0 = fv_0 \).
References

Seoul National University
Seoul 151, Korea