Stapler를 사용한 폐 절제술에 대한
임상적 고찰

곽영태 · 조순걸 · 조규석 · 박주철 · 유세영

Abstract

Clinical Study of Pulmonary Resection Using Stapling Device

Y.T. Kwak, M.D., S.G. Jo, M.D., K.S. Cho, M.D.,
J.C. Park, M.D., S.Y. Yoo, M.D.*

A comparative study was taken for pulmonary resection between group stapler used and not used.
1) There was no bronchopleural fistula in 22 cases of stapler used group, but in 4.5% in not used group.
2) The postoperative amount of fluid and air leakage through the chest tube were lesser in stapler used group.
3) The operating time was shorter in stapler used group because of lesser dissection of hilar structure.

I. 서 론

Ravith 등이 1959년 실험 동물 및 소수의 임상환에 Russian stapling device를 사용하여 기계적인 기관지 복합을 실시한 이래로 stapler를 사용한 폐 절제술의 이용도가 점차 증가하고 있다.

II. 관찰대상

1) Stapler를 사용한 환자의 구성 및 수술 방법은 표Ⅰ과 같다. 22례의 환자중 폐결핵 6례, 패암 4례, 기관지확장증 5례 등이었다. 환자들의 대부분은 기관지 절제술을 실시하였으며, stapler를 기관지 복합에 사용하였던 경우는 염증이 심했던 폐결핵 1예, incomplete fissure 11예 있었다(표Ⅰ 참조).

III. 수술시 사용한 기계

IV. 관찰 결과

1) 숲후 배액된 chest tube drain의 양은 고식적으로 수술한 군에서는 500~1000 cc가 83례로 62.8%로 가장 많았으며 100~500 cc 배액된 경우가 31례로 23
Table I. Stapler group.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Sex</th>
<th>Age</th>
<th>Diagnosis</th>
<th>Operation</th>
<th>Stapler</th>
<th>Bronchus</th>
<th>I.F.</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f</td>
<td>28</td>
<td>Destroyed Lt. lung Tb.</td>
<td>Pneumonecetmy, Lt.</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>9m</td>
<td>Foreign body</td>
<td>RML, RLL-ectomy</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>m</td>
<td>29</td>
<td>Cavitary Tb. lesion</td>
<td>Segmentectomy</td>
<td></td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>23</td>
<td>Pulmonary Tb.</td>
<td>RUL-ectomy</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1(pul.v)</td>
</tr>
<tr>
<td>5</td>
<td>m</td>
<td>39</td>
<td>Middle lobe synd.</td>
<td>RML-ectomy</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>33</td>
<td>Bronchiectasis</td>
<td>RLL-ectomy</td>
<td></td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>f</td>
<td>33</td>
<td>Bronchiectasis</td>
<td>Lt. basal & lingular</td>
<td></td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>71</td>
<td>Adeno Ca.</td>
<td>RML-ectomy</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>m</td>
<td>62</td>
<td>Fibrothoax</td>
<td>Decortication</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>m</td>
<td>34</td>
<td>Hamartoma</td>
<td>RLL-ectomy</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>44</td>
<td>Destroyed Lt. lung Tb.</td>
<td>Pneumonecetmy Lt.</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>m</td>
<td>39</td>
<td>Multiple bullae</td>
<td>RUL-ectomy</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>f</td>
<td>28</td>
<td>Destroyed Lt. lung Tb.</td>
<td>Pneumonecetmy Lt.</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>f</td>
<td>28</td>
<td>Bronchiectasis</td>
<td>Lt. basal & lingular</td>
<td></td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>f</td>
<td>23</td>
<td>Bronchostenosis Tb.</td>
<td>LUL-ectomy</td>
<td></td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>m</td>
<td>57</td>
<td>Middle lobe synd.</td>
<td>Pneumonecetmy, Rt.</td>
<td></td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>m</td>
<td>55</td>
<td>Empyema thoracis</td>
<td>Lt. basal & lingular</td>
<td></td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>m</td>
<td>30</td>
<td>Bronchiectasis</td>
<td>Rt. basal segmentectomy</td>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>m</td>
<td>74</td>
<td>Squamous cell Ca.</td>
<td>RML & RLL-ectomy</td>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>m</td>
<td>29</td>
<td>Destroyed lung Rt.</td>
<td>Pneumonecetmy Rt.</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>m</td>
<td>47</td>
<td>Squamous cell Ca.</td>
<td>RML RLL-ectomy</td>
<td></td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>m</td>
<td>60</td>
<td>Squamous cell Ca.</td>
<td>Pneumonecetmy Lt.</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>11</td>
<td>2</td>
</tr>
</tbody>
</table>

I.F.: incomplete fissure
Pul. v.: pulmonary vein

Table II. Etiology and Surgical Procedure in Non-stapler Group

<table>
<thead>
<tr>
<th></th>
<th>Tbc.</th>
<th>Empyema</th>
<th>Bn. tumor</th>
<th>Malig.</th>
<th>Bronchiectasis</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobectomy</td>
<td>22</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>57</td>
</tr>
<tr>
<td>Lobectomy + segmentectomy</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>Segmentectomy or wedge resc.</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>Rt. pneumonecetmy</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Lt. pneumonecetmy</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

*this study not contained bulla surgery.
Table III. Amount of chest tube drainages

<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>100-500</th>
<th>500-1000</th>
<th>1000-15000</th>
<th>Over 1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-stapler</td>
<td>5</td>
<td>31</td>
<td>83</td>
<td>8</td>
<td>5*</td>
</tr>
<tr>
<td>Stapler</td>
<td>3</td>
<td>16</td>
<td>2</td>
<td>2**</td>
<td></td>
</tr>
</tbody>
</table>

* four of them required re-operation for control of postoperative bleeding
** required re-operation for control of postoperative bleeding

%를 차지하였다. 기계적 통합을 실시한 군에서는 100~500 cc 가 72.7 %로 가장 많았으며 500~1000 cc 배액된 경우는 2예로 0.9% 되었다.

이 비교에서 보는 바와 같이 수술후 황관 배액양에서 stapler를 사용한 군에서 혈색 검출을 알 수 있다. 스탠퍼를 사용한 군에서 배액량이 1500 cc 이상 되었던 2에는 응급 재수술 결과 배액액 간절의 slipping 및 늑간 동맥의 파열이 원인이었다 (표 III 참조).

2) 수술 후 폐기 누출 기간에 대한 비교는 고속관 폐결제술에서는 70예에서 7~10일로 58%였으나, 기계적 통합을 한 군에서는 4~6일이 16예로 72%되어 기계적 통합에서 혈관 폐기 누출의 기간이 단축을 할 수 있었다 (표 IV 참조).

Table IV. Post-operative air leakage

<table>
<thead>
<tr>
<th></th>
<th>1-3</th>
<th>4-6</th>
<th>7-10</th>
<th>11-15</th>
<th>Over 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-stapler</td>
<td>28</td>
<td>12</td>
<td>70</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Stapler</td>
<td>2</td>
<td>16</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

3) 수술 후 무서운 혈관중과 기관지 누의 발생 빈도는 고속관 통합에서는 6예로 4.5%였으며, 기계적 통합에서는 아직 한 예도 경험하지 아니하였다. 수술 후 발생한 농곳의 빈도는 고속관 방법에서는 8예로 6.1%였고 기계적 통합에서는 2예로 9%에 달하였으나 이는 폐 농곳 전체의 contamination된 것으로 생각하고 있다. 수술 발생한 호흡부전의 빈도는 고속관 방법에서는 5예로 3.7%였으나 기계적 통합에서는 한 예도 없었다 (표 V 참조).

V. 고 안

Stapler를 사용한 장기의 통합은 근처에 이르러 보병화되고 있는 바, 저자들이 사용한 TA series나 위 장관 통합시 사용되는 EEA나 GIA등이 그 보병화한 예

Table V. Postoperative complications

<table>
<thead>
<tr>
<th></th>
<th>Non-stapler</th>
<th>stapler</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.P.F.*</td>
<td>6(4.5%)</td>
<td>0</td>
</tr>
<tr>
<td>Empyema</td>
<td>8(6.1%)</td>
<td>2(9%)</td>
</tr>
<tr>
<td>Bleeding</td>
<td>5(3.7%)</td>
<td>2(9%)</td>
</tr>
<tr>
<td>Resp. Insuff.**</td>
<td>5(3.7%)</td>
<td>0</td>
</tr>
</tbody>
</table>

* B.P.F. : Bronchopleural fistula
** Respiratory insufficiency

이다.

1) 기관지누의 발생 빈도를 감소시켜서 그에 따라 발생되는 동종의 빈도도 감소시킬 수 있었다는 것.

2) incomplete fissure를 바리시 stapler를 사용하여 최대한의 폐 심질을 보존할 수 있었으며.

3) 고속관 수술에 보다 빠른 수술 속도를 달 해도 되고, stapler의 사용 방식이 간단하여 수술 시간의 단축, 출혈량의 감소 및 마취 기간의 단축을 대해 할 수 있다라는 점이다.

기관지누의 발생 빈도는 전 폐결제술 후 4~27%에 달하고 있는 바, stapler 사용시에는 1.5~2.9%로 감소하였다고 보고하고 있다. 동물 실험적인 근거로는 1974년 Scott에 의하면 stapler를 사용한 기관지 통합이 고속관 analogue 및 catgut 통합보다 더 leak pressure가 있어서 3배 이상 (251.25mmHg) 차이난다.
REFERENCES