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Optimum Approximation of Linear Time-Invariant
Systems by Low-Order Models

Sang-bong Kim*

A method is given for obtaining low-order models for a linear time-invariant system of high-order

by minimizing a functional of the reduction error between the output response of the original system

and the low-order model.

The method is based on the Astrém’s algorithm for the evaluation of complex integrals and the

conjugate gradient method of Fletcher-Reeves. An example illustrating the application of this method

is given for approximation of a 4~th order system to be used in the load frequency control of generator

systems.

Introduction

The need for methods of optimum approxima-
tion of high-order systems by low-order models
has been recognized for some time.

Ths incentiveness for obtaining a simplified
system model arises when one is confronted with
a state-space representation of a system with
many state-variables but only a few output vari-
ables.

A complex dynamic system is frequently desc-
ribed by a high-order differential equation. When
such many systems are interconnected, the resu-
Ited system size may be too large to be convenie-
ntly handled, even by a large computer.

A typical example of this situation occurs in
the dynamic-stability studies of modern interco-
nnected power system is defined as the stability
under infinitesimal disturbances with the action
of the resulted devices taken into accountd.

Under dynamic conditions, the system equati-
ons are linear, but the total number of differe-
ntial equations that describe the system perform-
ance increase rapidly with the increase in the
numbsar of interconnected machines. Therefore,
the necessity for techniques to produce low-order

mois! equivalents of high-order systems is ajpa-
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rent.

In the recent years, a considerable attention
has been given to the problem of approximating
a linear time-invariant system of high-order by
a model having a low-order. The time-domain
methods of system simplification are usually based
on the neglect of the non-dominant eigenvalues
of the system or on the minimization of a
functional of error between the output responses
of the reduced model and original system?. On
the other hand, the frequency-domain methods
of system simplification usually consist of the
determination of a transfer function whose freg-
uency response is close to that of the system. A
frequency-domain method of simplification based
on the expansion of the system transfer function
and ignoring some of the quotients is also avai-
lable)31:4),

Sinha’s method®, in which an optimum low-
order model is obtained with respect to any spe-
cified criterion, is based on the pattern-szarch
algorithm of Hooke and Jesves. But these meth-
ods require much computer time and the compl-
icate matrix equations to be solved.

Therefore, the object of this paper is to deve-
lop a more general method, resulting in providing
an optimum low-order model is specified, the

proposad mzthod is better suitzd for mod:lling

— 71 —



Kim, Sang bong

high~order systems in the points that this method
requires less computer time than the case based
on the criterion of optimization and does not

need the complex matrix equations to be solved.
Problem statement

Considering that a linear time-invariant system
of high-order is described by the n-th order diff-
erential equation,

ary(¢ dmiy(t) . . dy()
~d_t€'—)+al_d-tT_T‘\+ i +au—1T +any(t>

_ L, dnr(t) drlr(t) | dr(t)
=bo—p ot by o Fbaer— gt T bar ()

where y(¢) is the output variable and r(¢) is the
input.

Considering that a low~order model is descibed
by the r-th order differential equation,

CEE O ZONSINZO RPN

dtr dir-1

5 ATt dr-1y(t dr(t) . 1+
--bo "dt(r)"‘ Iy dir-1 ) +"‘+b’r—l’——dt +br r(t)

In the frequency domain, taking the Laplace
transform on both sides of Eq.(1) and Eq. (2),

we can write as rational fraction polynomials

B(s
6= }?’_gg or G(s)= AES% ...... 3)
where
A()=S"+ay s ife et By gS e €
B(s):bos"—i-bls""’+"'+bn—15+bu ...... (5)
and
G,(s)= )1;((;)) or G.()= fgg ...... (6
where
A (S)=s+ay sl tat, 548, e )
B,(s)=b0'5'+b1's"‘+~~~+b',..ls+b,’ ...... (8)

The linear time-invariant system in Eq. (1)

can be described as follows by the dynamic equ-

ations;
x(D=Ax()+B-r(t) e 9)
y(O=Hx( e (10)

where x(t)=nX1 state vector

y(t)=mX1 output vector
A=nXn matrix

H=mXn matrix
B=nXp matrix
r(t)=pX1 input vector
The low-order model in Eq. (2) can be described
as follows by the r-th order dynamic equations;
x ()=Ax(+Br) e an
yp-O=Hx () e (12)
where x,(¢)=rX]1 state vector
y.()=mX1 output vector
A, =rXr matrix
B,=rXp matrix
H,=mXr matrix
From the state-variable approaches, we can
write Eq. (3) and Eq.(6) as
Y($)=G(s)*R(s)=H(sl,— A)"'BR(s)

~Hledi(sh—A)]
R A TR

Y, (s)=G,(s)-R(s)=H,(sI,— A,)"'B,R(s)

ELedil A prcsy (1)
where

I,=the n~th order unit matrix

I,=the r-th order unit matrix.

The reduction error in Eq. (10) and Eq. (12)
will be defined as

e)=y®)—u, & e (18)

To synthetise the optimum low-order models,
the reduction error of Eq.(15) must be minimized.
Therefore, we consider that the cost function of
the systems with deterministic inputs to be min-
imized is then

J= S:ez( gt (16)

For several control inputs the general form of
the cost function corresponding to Eq. (19) yields

7={ ter)qecas

=g:ne(t)ugd: ...... an

where @ is a real symmetric positive semi-de-

finite mXm matrix.

Taking the Laplace Transform on both sides
of Eq.(15), the reduction error is written as
E(s)=Y(s)—Y ()=[G()~G,(s)IR(s)
=[H(sl,—A)"‘B—H,(sI,— A,)"'B,]R(s)
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Using the Parseval’s theorem .in Eq. (17), it is

rearranged
1 =
Jog jij_ET(s)QE(_s)ds

w7 R~ C)TQLG(—5)

2nj
—G(—IR(=s e (9)
The matrix Q is taken as
Q=diaglq,, g2 93,7 Gl e (20

where is a square matrix with ;=0 for all i%j.

And, let’s consider that the reduction error is
E(s)=[E(s), Ex(s), -+ Ea(s)] - 21)
Substituting Eq. (20), (21) into Eq. (19), we
have
e (V™ p e SEC—ds) e
I=Ea 5", ECE(—5)ds) 22)

From the relations of Eq.(3) and Eq. (6), the

reduction error Ei(s) can be written as rational

polynomial
Ei(s)=B;(s)/A;i(s) ceen(23)
where
A(s)=agismtayist 4o dgi,_ystad e ¢2))
Bi($)=bpism 1o by is4bé e (25)
Stbstituting Eq. (23) into Eq. (22), we have
=31 (7 Bi(s)-Bi(—s) 4
= gq‘(anS-;. A:(s) A;(—s) 5)
=§Qi'] F R L AL 26)
where
r= 1 [ Bi(s)Bi(—=8), . ... @n

T 2z i A(5) A=)
If the polynomial A{s) in Eq.(3) has all roots

in the left half plane, then the cost function

becomes
_ 1 {(i= B(s) _B,(sN[B(—s)
I=5 5_,-3(5{14_(5 4,())\A(=s)
_ﬁ:E:Z%]R(—s)ds ------ (28)

Assumption of low-order model

Let’s consider that the new state-variable z,(¢)
with respect to x, is described by
z)=Tx,(t) e (29)
where T is rXr nonsingular matrix with inverse
matrix.

Rearranging Eq. (28), we have
(=T, e (50)
where T-!=inverse matrix of T.
Substituting Eq. (30) into Eq. (11) and (12),
we obtain the following;
2(O=TA, T2, ()+TBr(t) o (31)
v (O=HT"z,¢8) (32)
The transfer function of systems with dynamic
equations (31) and (32) can be expressed as
Gr(s)=H,T-\(sI,~T A, T-)"'TB,
=H,T[T(sI,—A)T'17'TB,
=H,(sI,—A)'B, e (33)
Egq. (33) indicates that the same outputs can be
obtained with respect to the same inputs, there-
fore Eq. (33) is equivalent with the transfer
function of the low-order model given by Eq.
(11) and (12).
If the controllability and observability are
supposed, then this system has only a transfer

function.

Problem solution

1. Cost funetion

To compute Eq.(26) we are led to the problem
of evaluating the integral such as

_ 1 {~ B(s)-B(—s)
I=5 ) Ay Ac=5"

where A and B are polynomials with real coeffi-

cients
A(S)=aoS" 4@ " o @St @y e (35)
B(s)=bs" oot byys+b, e (36)

The integral Eq. (34) can of course be evalu-
ated in a straight-forward manner using residue
calculus. It turn out, however, that the general
formulas are not practical to handle for systems
of high-order. For this purpose we will present
recursive formulas for the evaluation of the int-
egral Eq. (34) which are convenient both for
hand and machine calculations. A decomposition
of the polynomial A(s) of Eq. (24) into odd and
even terms is

A=AH+AE e (37)

where
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A=+ a2t = [A () + (1) A=)
...... (38)
E(s):als"“+a3s"-3+...=.%_[A(s)—(——l)'.4(—s)]
...... (39)

Let’s consider that the order of the polynomials
Ax(s) and By(s) are lower than n-th order as the

following;
Ag(s)=agtsttapst=tpaadat e (40)
Bu(s)=byhst—ti b rsk—2 4o bk e “n
which are defined recursively from the equations
A=A —aSA(s) e (42)
B,,(s):B,,(s)——B,,/-fk(s) ...... (43)
where
ap=ag*far* . (44)
Be=bikfey* (45)
and
A=A e (46)
B(s)=B(s) e “n

The polynomials 4,.; and B, can apparently
only be defined if a%0.
To compute the integral Eq. (34) we introauce

i= By(s)Bi(—s)
I”“é‘ﬁ L., A:(S)A’:,(—s) ds

where the polynomials 4;(s) and By(s) are defi-
ned by Egq. (39) and (40).

If the polynomial A(s) has all roots in the left
half plane, then all the polynomials A,(s), k=n
—1, n—2, ---, 0 have also roots in the left half

plane, and all the coefficients e;* are positive.

Hence
Li=hi+-82/2a, k=1, 2, 1, 1~ oo (49)
L=0, L=I .. (50)
where

a*; i: even, {=0, 1,2,--, k—1

a;tt= {a"iﬂ—ﬂ'ka"x‘-rz it odd, ap=as*/a* .
...... (1)

P {bkiﬁ i even, i=1, 2,-, k—1
i br i —Brateyy i odd, Be=bi*/a*

These are obtained by identifying coefficients
of powers of S in Eq. (42) and (43).

Having obtained the values «, and B;, the
value of the integral is then given by Eq. (49) as
follows;

’i’éﬁ‘z/z“*:é 41/ (2atarry e (53)

As the computations are defined recursively,
it is now an easy matter to obtain a computer
algorithm.

Therefore the cost function of Eq. (26) can be

easily computed by the flow chart as shown in
Fig. 1.

"
a; =

n

bi = b; HER X TR

& = a / ozt
A = bt‘ J af‘ Coznpu(g
T2 (B (2a)
Compute
Kot =
/
v>

G f‘ﬁ“

Fig. 1. Flow chart for Astrém’'s algorithm.

If the polynomial 4;(s) has zeros in the right
half plane, as the cost function cannot be com-
puted with above algorithm, let it part as the
polynomial ¢;(s) having zeros in the left half
plane, and the polynomial v,;(s) having zeros in
the right half plane. Then the polynomial A(s)
yields

A(H=¢i()i() e 59

The reduction error in Eq. (23) can be written

as
Ei($)=B{()/[¢i(Ivi(s)] e (55)

Eq. (55) can be rearranged as the following
Bi($)=Di(Hei(>+R(s) e (56)

where D;(s) is the quotient of B;(s)/¢;(s) and R;
(s) is the remainder.

As the condition taking the steady state error
with zero, R;(s) in Eq. (56) must be zero as the
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following

Ri(s)=0 (57)
Now using the condition of Eq. (57), Eq. (56)
becomes
E(s)=D{s)f¢:i(s) e (58)
As a result, the cost function J; can be comp-
uted with the algorithm of Astrom?:®, since B;
(s) has only all zeros in the left half plane.
Furthermore, the condition having all zeros of
the denominator polynomial of E;(s) in the left
half plane is equivalant to
1}52 e,-(t):li;x; sE(s)=0 e (59)

Therefore, the condition of Eq. (57) equals to
the condition that the last values of the output
of the original system and the low-order model

have the same after a constant time.

2. Optimum method

The problem of approximating high-order sys-

tems by low-order n.adels in an optimum manner.

as fomulated in th the above, can only be solved
for the specipic condition that the cost function
of Eq.(26) must be minimized in the constrained
condition of Eq.(57).

Since an analytical solution to the problem
does not appear feasible, various search technig-
ues may be considered. But in this paper the
conjugate gradient method of Fletcher-Reeves®)-
1011 was selected as a suitable method for this
work.

The algorithm proceeds as follows:

1) A starting point is selected.

2) The direction of steepest descent is determ-
ined by determining the following direction
vector components (normallized form) at the
starting point,

Where k=0 for the starting point.
3) A one dimensional search is then conducted
along the direction of steepest descent utiliz-

ing the relation,

Xi(new)=X;(old)+8:P;, i=1,2,--,n  --(61)
where 8; is the distance moved in the P direc-
tion. When a minimum is obtained along the
direction of steepest descent, a new “conjugate
directon” search direction is evaluated at the
new point with the following normalized comp-

onents:

_(_‘3]_)(')+B(k—1) P,(k=1)

Pib = 9X;
[il(_(%)m+B(,_,)Pj(,_l))z]m,
ye
' i=1,2,--,n ---(62)
20T
g1 = :

ner g \(k=1)32

£l

4) A one dimensional search is the conducted
in this direction. When a minimum is found,
an overall convergence check is made. If
convergence is achieved, the procedure ter-
minates. If convergence is not achieved new
“conjugate direction” vector components are
evaluated per step 3) at the minimum point

from the current one dimensional search.

[ Pick Starting Point

|
Determine

t

Direction
Descent

of Steepest

i

Conduct One  Dimensional

Search n Steepest

Descent Direction

-
.

Conjugate
Components

i

Determine
Direction

Conduct One Dimensional

Search in Conjugate

Direction

Yes

Fig. 2. Logic diagram of optimization algorithm
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This process is continued until covergence is
achieved or N+1 directions have been searc-
hed. If a cycle of N+1 directions have been
completed, a new cycle is started consisting
of a steepest descent direction (step 2) and N
“conjugate directions” (step3).
A logic diagram illustrating the above procedure
is given in Fig. 2.
Since the partial derivatives of the cost function
X(2),,

X(n) of low-order model can not be analytically

with respect to the parameters X(1),

obtained, we can compute with the following
appfoximation
aJLX(1), X(2), -+, X(m)]/0X(5)
= [J(X(1), X(2), -+ XD +5, XG+1))

‘ START ’

Crders and Coefficients

Read
of polynomial, and Initial
Low-Order Model

Values of

Evaluate the Cost fun-
m ~ction
J=x Qqi-Ji

iz

Compute the Loss Fun-
-ction

T=1+0g0" / 20

k k
lik = a, /&,
k k
)ak = b. / a
1
Evaluate Parameter Vector N
x, of Low-Order Model
P =-g(x = -q,

—J(X(1), X(2), - X(D) = X(G+1), - X(#)] /e

where ¢ is a minimum value that the difference
approximation can be sufficiently obtained.

A flow chart of the program for obtaining the
optimum parameters of low-order model is shown
And
was taken on Perkin-Elmer 3220.

in Fig. 3. in this paper, all computation

Numerical examples

The method of system reduction outlined in
above sections will now be applied to the simpl-
ification of a 4-th order system to be used in the

load frequency control of generator systems.

To Minimize J(x +§ i)
Compute §; by Linear Search
Xiee = X + 5, Pi-v”»

Pia = 'v_id + P 7
_ <G, G2
ri <9, 9 >
Jin = =3I Xie)/ 3x

Results

‘ STOP ’

Pri’nt

Fig. 3. Flow chart for computing optimum parameters of low-order model.
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The output response of the original systzm is
then compared with that of the low-order model
obtained by this method.

The dynamic equation of the original system

are

() ; o 1 0 90 'zl(t) l 0

B[00 1 0 [w®) |0

25(8) _i 0 0 0 1 |lul |80/

(! 1227 -6.7 5.7 -4.3| ()l |-31.3
%(e) |

yoy=rio0 B (683
(1) i

For the two resposes of impulse and unit siep
inputs, the corresponding models to be reduced
are given as follows;

(1) First order model

G(s)=1/(as+1) e (61)
where the parameter to be optimized is a.
(2) Second order model
x,(t) 01 x,(t) bo
= + r(t) ---(68)
%2(t) -a, -a; | | %:(t) by
o= uEE] D

Where the parameters to be optimized are o, a,
by, bi.

The parameters of the low-order models and
the cost functions obtained by this method are
shown in the Table 1 and the output responses
of the original system and low-order models
obtained by Runge-Kutta’s method!® are shown
in Fig. 4 and Fig. 5.

It is seen that as expected, the output respon-

ses of the original systems and the low-order

model with respect to impulse and unit step
inputs have approximatly the same values after

a constant time.

38¢
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COC 200 L0065, 800 650 71X m X
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Fig. ¢ Comparison of out-put responses for
impulse input.
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Fig. 5 Comparison of out-put responses for
unit step input.

Table 1. Values of the parameters for low-order models and the peformance indexes for

impulse and unit step inputs

Low-order Inouts Parameters of low-order models Performance
models P a, al bo by indexes{Jo)
First-order model Impulse 1.4230 — — — 1. 71893
Unit step 0. 6401 — — — 1. 3950¢
Second-order model  Impulse 1.5133 0. 5423 1.212 -0.2831 0. 01166
Unit step 1. 3170 0. 3904 1. 3156 0.0595 0. 18390
Conclusions ance of a high-order linear time-invariant system

A technigue for deriving a low-order equivalent

model that approximates closely to the perform-

has been proposed.
The Astréom’s algorithm and the steepest desc-

ent method have been used to determine models
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which are optimum in the sense that the square

integral of the reduction error between the res-

ponse of the original system and the low-order
model, is minimized and the last response is well
corresponded with the low~order models.

This method has been applied to determining
first and second order models of 4-th order system
to minimize the cost function by computer simu-
lation.

This method appears most useful in the follo-
wing advantages over previos method;

1. A funtional of the error between the original
and the low-order model outputs is minimized.

2. The low-order model can be uniformly obtai-
ned for the inputs described by rational polyn-
omial with respect to the Laplace operators.

3. Eigenvectors of the original system matrix A
and the complex matrix equations are not nec-
essary in being solved.

4. The algorithm obtaining the low-order model
is very simply, and the memory capacity and
the computing time taken for computation

become less.
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