{(Research Paper) Journal of the Korean
Statistical Society

Vol. 12, No. 1, 1983

Weak Convergence of Processes Occurring in
Statistical Mechanics**

Jong Woo Jeon*

ABSTRACT

Let X;™, j=1,2,+ #, n=1,2, - be a triangular array of random variables which
arise naturally in a study of ferromagnetism in statistical mechanics. This paper
presents weak convergence of random function W.(¢), an appropriately normalized
partial sum process based on S, =X+ 4 X, The limiting process W(¢t) is
shown to be Gaussian when weak dependence exists. At the critical point where the
change from weak to strong dependence takes place, W{(¢) turns out to be non-Gaussian.
Our results are direct extensions of work by Ellis and Newman (1978). An example
is considered and the relation of these results to critical phenomena is briefly explained.

1. Introduction

Let P be a probability measure on the real line satisfying
(Xt
fexp(%)p(dx) <oo 1.1
Let X;™, j=1,.,n, n=1,2,-.- be the triangular array of random variables with the

joint distribution @, defined by
Qudr)=d.t exp (s.2/2mT1 p(dx,) (1.2)

where x=(x, -, %.), Sa=x,+---+x, and d, is a normalizing constant which is finite
for each #>>1 in view of (1. D.
The model (1.1) is usually called the mean field model or the Curie-Weiss model in

the statistical mechanics literature, The Curie-Weiss model has been considered important
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due to the fact that it explains qualitatively and correctly the thermodynamic behavior
of some physical quantities in the neighborhood of the critical point. See Stanley (1975)
for reference.

In recent years, a probabilistic approach for the theory of the Curie-Weiss model has
been developed. A typical result is to relate the validity or non-validity of the central
limit theorem for S. to the non-criticality or criticality of phase. References along
this line are Simon and Griffiths (1973) and Dunlop and Newman (1975). The latest
result on the asymptotic distribution of S, was obtained by Ellis and Newman (1678).

In this paper, we consider W,(#), a normalized partial sum process based on S,
and establish weak convergence of W,(£). Analogous to the previous results, the limi-
ting process W(¢) is shown to be Gaussian at the non-critical phase. We note that this
limiting Gaussian process has the property that increments are not independent. At the
critical phase, W(¢) turns out to be non-Gaussian as expected. These results directly
extend the works of Ellis and Newman. As for the proof, we utilize the particular
form appearing in (1.2) to apply the conditioning technique. This method of proof is
well explained in Jeon and Sethuraman (1983).

In Section 2, we present the results of Ellis and Newman together with some preli-
minaries. The main results are stated and proved in Section 3. Section 4 is devoted
for an example. Finally, the relation of these results to critical phenomena is briefly

discussed in Section 5.

2. Preliminaries

In this section, we state some of the results presented in Ellis and Newman (1978) as
preliminaries. The detail can be consulted by their paper.

Let M(¢)=Jexp(tx) P(dx) be the moment generating function (m.g.f.) of P. Let
L(t)=logM(¢t). Let the function G be defined by

GHy=L-Lw. 2.1
Lemma 2.1 The function G is real analytic and G({)—oco as [{]|—0o. Thus, G has
only a finite number of global minima. Also
fexp{—n G(O)}dt < for any n=1,2, 2.2

Let m be a point of a global minimum of G. We call
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k=k(m) the type and c=c(m) the strength of m if as t-m,

G(t)=G(m) +%<2-;;—,’”>— +o(|t—m]). 2.3

We call the measure P pure if G has a unique global minimum.

Let {Y.}7., be a sequence of random variables. We write Y.»N(y, 02 or Yu—f(@®)
if the distribution of Y, converges weakly to the normal distribution with the mean ©
and the variance ¢2 or to the distribution whose density function is proportional to f.

We are now in position to state the theorem of Ellis and Newman.

Theorem 2.2. Suppose that P is pure with the unique global minimum at s of type

% and strength c. Then,
Saw —nm __)[N(o, -1, if k=1
niTHE exp {—ct/(20)1}, if k=2

where ¢ 1—1>( for k=1,
3. Main Results

For 0<<t<1, let

(412}

Walt) = & (X —m) 4+ (X o1 — 1) (3. 1)

nl-l/le

where [#n¢] denotes the largest integer not exceeding #f. Then W.(1)=(S."—nm)/
n'~1"#* and therefore has a limiting distribution as stated in Theorem 2. 2. In this section,
we prove that under those very conditions, the stochastic process {W,(8),0<¢<1} con-
verges weakly to a process { W(¢), 0<<t<(1}, where W(-) is non-Gaussian if £>2 and is

a Gaussian process which is not a Brownian motion if k=1,
3.1. Conditional Weak Convergence

To apply conditioning technique, we first introduce a fictitious random variable Z.

as follows: Rewrite . in (1.2) as

Qu(dx)=d, exp(s:*/2 MTIp(dx,)

:dn-ln(k-l)/mz(z n-)-UZJ'exp {sn(zn~112i +m)__n(zn—112k +m>2/2}

Xdzjlip(dx,-)
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=d,-nt-02(2 1) V2 exp{s.(an V¥ +m)—n L(zn V2 +m)}
X ,I,j[lp(dxj)exp{—nG(zn‘““‘er)}a'z
—d, D122 1) Vtexp{ —nG(m))
I’I:Tlexp{x,-(zn“”“qhm)—L(zn”““—km)}
x p( dxexpl—n{G(anV*+m)—G(m)} 1dz
= K, T1 Ry o(d5)hn(2)dz

= [ 1T Ru2(dx)fo(2)dz (3.2)
where
R.,.(dx) =exp{x(zn=2*+m)— L(zn-V2*+m)} p(dx) 3.3
h(2) =exp[ —n{G(zn V2 +m) —G(m)} ] €))
and
fu(R)=ha(2) /[ ha(2)d2. 3.5

It becomes now obvious from (3.2) that R, is the common distribution of X;,
j=1,+,n conditicnal on Z.=z where f, is the density function of Z..

Theorem 3.1. Let p be pure and of type k& and strength c.

Then, under R.,., {W.(), 0<£<1} is tight.

Proof. Following the argument on page 60 of Billingsley (1968), we shall show that

for each ¢>0, there exist >>1 and an integer #n, such that if n>mn, then
P, {max|S;" —im| ALV <le/ 22 (3.6)

Now, since

n-t+12kmax | iL (zn Ve m) —im|

i<n
=pl2k| L' (gn V2 4m)— L' (m)|
:nI/ZkIL"(m)zn-1/2h+0<n-1/2k)I
=|L"(m)z+0(1)|, as n—oo,
there exists #, such that for n>w#n,,

max 1L (zn-V2 - m) —im| <(3/2)L" (m)| z|n~V2k, 3.7

Next, we note that, under R,,., the mean and the variance of X are L'(zn~ Y +-m)
and L'/ (zn~ "% +m), respectively. It thus follows from the lemma on page 69 of Billing-
sley (1968) that

Pr{max|S;"™ —iL'(zn" V% +m) | =(A/2)n*"1'%*}
1-1/2k

<2 Pr{ls"(")_nL’(zn_lth+m)|—>—(2—n:/77’"_2"‘ \/7> ‘/n_a.;_z}
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Sn(")-nLl(Zn_1/2k+m) 2n(h—l)/2h _
V10,2 = 20, - 2}

—2 Pr”

where
o= L"(znV2k L),
By the central limit theoem, there exists s, such that for n>n,,
Pri{max|S:™ —iL'(zn~V24-m)| > (2/2)nt- V24

Zn(k—l)lzl —_—
<3 Pr{]N(O, D> LR «/2}

Zn(k—I)IZk

} for 2>2-2- (2L (m))V?

< 3220 LU g g, 1) 3.8)

14722(11—1)”;

Let ¢>0 be given and choose 1 and #, such that
> max{L""(m)}z|, 48 L' (m)/'?} and ny=max {1, 1} .
Then, for n>n,,

Pr{max| S —im| =ani-124
<Pr {Iir;axIS,-‘“—z'L'(zn'““%—m)l +§£le[iL’(zn"’2h+m)—z'L'(m)[2,1n1—1/u}
< Pr (max| S L (zm™ ) [ mt-1232)
+Primax|il!(m)—iL'(zn~V* +m)| > dn'-124/2)

2,04, 04, 12 2
< 3 224;122(1;-11()/&(’”) +0 by . 7> and (3' &

< 382420 L(m)? €
- A2 48% L' (m)?
This establishes(3, 6).

=¢/22

We now establish the finite dimensional convergence of W.().
Theorem 3.2. Let p be pure and of type # and strength c.
Then, under R,,., for 0 <s<t<1,

0{sz, (t—s)z}, if k>2
(Wau(8), Wa(£)— Wo(s))— -
N{(sz(1=0), =) 21—y, (317 V-od-o)} i k=1
where d{-} stands for degenerate distribution.

Proof. Since

Wy~ —SBerlntlm_| | X om |

1-k/2 1-1/24
n n



Weak Convergence in Statistical Mechanics 15

and the left hand side in the above inequality converges to zero in probability for each

0 <<t <1, it suffices to obtain the limiting distribution of

( oy — [nsIm Son—Se)—([nt]—nsPHm > (3.9

nl-—l/Zh ’ nl—l/Zk

It can be computed by using independence of X;*’'s and was in fact shown in Jeon
and Sethuraman (1983) that under R,,.,

S™—nm {5{2} , ifk>2 (3.10)

nimHE (N(1—0)z, (1—0)), if k=1
Accordingly, we have that
S, —[nsIm 0{sz} ,if B>2
nizuek —’[Ncsa—c)z, s(1—0)), if k=1.

Since the components in (3.9) are independent, the theorem is proved.

We thus establish the following conditional weak convergence.

Theorem 3.3. Let P be pure and of type & and strength ¢. Then, under R.,., W,(+)
converges weakly to W.(-) where W.(-) is a Gaussian process with independent and
stationary increments and with EW.()=2zt(1—¢) and Var W,(t)=(1—0c)¢ if k=1, When
k>2, W.,(+) is a process degenerate at the function zf, 0 <<¢<1.

3.2. Weak Convergence

Recall that the joint distribution €. in (1.2) was reexpressed in (3.2) in terms of R.,,.
and f.. Weak convergence of W,(-) therefore follows from Theorem 2 of Sethuraman
(1961), if f.(2) converges to a probability density function (p.d.f.) f(z) for each z.
That is to say that W.(+) converges weakly for each fixed z (Theorem 3.3) and f,.(2),
the p.d.f. of Z, converges to a p.d.f. f(2) for each z. The limiting process W(-) will
then be determined as the f-mixture of W.,(.) obtained in Theorem 3.3. Since the
pointwise convergence of f, to f which is proportional to exp (—cz?*/(2k)!) was
established in Jeon and Sethuramam (1983, Lemma 2.2), we obtain the following
result of weak convergence fo W,(+)

Theorem. 3.4, Let P be pure and of type % and strength ¢. Then, W,(+) converges
weakly to a process W(.) where W(.) is a mixture of W,(-) with f(2). Its f{inite
dimensional distribution is determined as follows:

For 0 <s<¢<1,

(W), W) - W(H)~NQ, T=(0:)), if k=1
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where
ou=8"(1—0)%c ' +5(1—¢), 2==—5)2A—C)%c 1+ (¢ —5)(1—0)

G12=05=S(t—8)(1—c)%!

and

Pr {W(s) <x, WO-W <3 =""" fardz it k=2
where

u(x,y)=min{x/s, y/{t-s)}
and

J(2) =exp{—cz®/(2k)1} /[ lexp—cz?*/(2 B) 1} dz.

4. An Example

For 0 <§<1, let Ps be the measure such that P({v8})=P,({—+B})=1/2. Note
that when 8=1, P, is the symmetric Bernoulli measure in which case the asymptotic

distribution of S, was first considered by Simon and Griffiths (1973). Now, since

Go()=t?/2—log{cos h( vBED} >0 Vtx0
and as {—oo,
GO = —B)t2/2+38%/ (41D +0(D),

P, is pure with the unique global minimum at 0 and is of type 1 and strength (1—38)
if <1 and is of type 2 and strength 3 if 8=1. The limiting process W(¢) in this
model can thus be obtained via Theorem 3.4. In particular, when 8=1, we obtain the
distribution of W(1) as

Priw(1)<y}
=Pr{w0) <=x, W(1)—-W(O) <y}
:S;f(z)dz
where
f(2) =exp(—2*/12)/fexp(—z*/12)dz.
The above coincides with the results of Simon and Griffiths (1973, Theorem 1) and

Theorem 2.2 in Section 2.

5. Physical Interpretation

Suppose that we have a magnet which can be considered as a body consisting of an
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extremely large number of sites. The total magnetism of the body is the sum total of
the magnetism present at the sites. The magnetism present at a site is also called a
magnetic spin. To study the total magnetism in a body, several probabilistic model for
magnetic spins have been proposed. A standard model states that :

Pr((X,™-, X,")=dx) =Q.(dx)

=d, gt =TT P(dx,)
i=1

where X;™ represents the magnetic spin at the site j when there are » sites. The func-
tion H(x,,-, x,) is the Hamiltonian which represents the energy at the configuration
(xy,++, x,) and B> 0 is the inverse temperature. In a ferromagnetic field, the form of
H is given by H(xy, -, x.)= —1/23[i;x:x; where [Ji; > 0, If, further, it is assumed
that J:;=1/n for all { and j, that is to say, that each ‘spin interacts equally with every
other spin with strength 1/# and P is replaced by Ps(x)=FP(x/ v 8), one obtains the‘
Curie-Weiss model. The example in the previous section asserts that when 8 <1 (high
temperature region), the central limit theorem holds whereas when =1, it does not. In
fact, under a different normalization it converges to a non-normal distribution. This
reflects the physical fact that the critical temperature S. at which phase transitions

occur is equal to 1.
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