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Nonlinear Regression with Censored Data

D.W. Shin* and D.S. Bai**

ABSTRACT

An algorithm based on EM procedure which finds maximum likelihood estimators in a nonlinear
regression with censored data is proposed, and asymptotic properties of the estimator are investig-

ated in detail. Some numerical examples are also given.
1. Introduction

In a recent paper, Aitken (1981) utilizes the EM procedure (Dempster et al, Q977
for estimating parameters in linear models with right censored normally distributed res-
ponse variables. In this paper, his results are extended to the case where the substantive
nature of the data or other considerations indicate a response function which is not linear
in the unknown parameters.

Consider a nonlinear regression model

yi=f(x:, 0 +n;, i=1,+, N, D)
where f(x:,6) is a known function except for a £x1 vector parameter 0, and 3, -, px
are i.i.d. normal random variables with

E(p)=0, Var(yp)=02
For each xi, i=1,---, N, »:is observed if it is not greater than y.*, otherwise, it is cen-
sored at y;*, where y* is a predetermined constant. Let the number of censored data be
m, 1<m<N. Without loss of generality, we assume that the observations are rearran-

ged as
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TR Vny yn+l*7 "ty .yN*’
where n=N—m.
In Section I, an iterative procedure is proposed for obtaining maximum likelihood

estimators (MLE's) of 6 and ¢ in (1) via EM algorithm. Consistency and asymptotic

normality of the estimators are studied in Section [I. And numerical examples are given

in Section L.
I. Maximum Likelihood Estimation via EM Algorithm

The EM procedure proposed by Dempster et al.(1977) is useful for maximum likeli-
hood estimation with incomplete data. The algorithm consists of two parts; expectation
step and maximization step. In the expectation step, the conditional expectations of the
incomplete data are obtained and in the maximization step the MLE’s are obtained reg-
arding the conditional expectations as complete data.

The following algorithm is an application of the EM procedure to obtain MLE's in (1).
Algorithm

Step 1 Give initial values, 0=, o), of w=(08,0). Set v=1.
Step 2 For i=n+1,++, N, compute
ECY:| V>, 0@)=f(x:,6“)+a® S(2a™),
where S(H)=¢/T (@),
d(HH=(2r) V2exp(—1%/2),

ORI

and

Ziy*: {yi*_f<x|', 0(u)>} /U-(W.
Step 3 a) Obtain the least square estimators, go+v  of # regarding E(Y:|
Yi> 9%, 0®) as complete data for i=n+1, <o, N.

b) Compute
0-(u+l):[i(y‘__f(xi, 0(»)))2+0(v)3 £1(1+M.-S(u;))]”2/]\7”2, (2)

Where Ui= {yi*__fC-xi, 0(x«+l)>} /0'(”),
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Check convergence. If the convergence criterion is satisfied, stop. Otherwise,

set v=v-1 and go to Step 2.
Let L be the likelihood function, i.e.,

=ffrbec] [fren)]

where zi:(.yi—fcxiya))/g’ 1217 AR
and z*=(y*—~f(x,,0))/0, i=n+1,---, N.
Differentiating logL with respect to ®, we obtain

L of(x., 6 .
X CN L Y ©

)

S, 0
e 1 —0o%|=0,

QUL LSS Cay)| 2
n+1 n—7y Zi*SCZi*)

where w:={ 3, i=1,+,n,
{f(x,-,&)%—aS(zi*), i=n+1,--, N.

Note that (3) is just the normal equation of the nonlinear regression model (1) if
(Wa+y, +--, wy) is considered to be complete data. Also, if we let o+D =0 =@ and ge+v
=0%=g, (2) reduces to (4). Consequently, the algorithm is just an iterative procedure
to solve the normal equations (3) and (4), which implies that the limit of the sequence
of the estimates obtained by the above procedure is the MLE if it exists. The conver-

gence of the EM algorithm was proved by Dempster et al. (1977) and Boyles (1983).
II. Asymptotic Properties of the MLE’s

Since the samples in (1) are censored, they are not necessarily identically distributed.
Hence, the usual limit theorems for i.i.d. random variables are not applicable. Hoadley
(1971) studied the asymptotic properties of MLE's in INID (Independent Not Identically
Distributed) cases and derived the regularity conditions for consistency and asymptotic
normality. Following him, the limiting behaviors of the proposed estimators are investi-
gated in this section.

The following notations will be used throughout the section.

[1-1]; Eucleadian norm,

w; (6,0), (B+1)x1 vector parameter,
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°; (8°0°), true value of o,
@y; MLE of o,
8; closed subset of R*,
Q0; {@:6<=06, o>¢}, where >0 and known,
gi(y:|l@); pdf. of ¥y, i=1,---, N,
Ri(w) =(log{g:«(y:|®@)/g:(y:|0®)}, when g:(y:ila®)>0,
{ 0 , when g:(¥:]0%)=0,
Ri(w, p)=sup{R:(®) : ||t—w|| <p}, where p is a positive constant,
Vi(r)=sup{R:(@) : | |o||>7}, where 7 is a positive constant,
Y®=(Y , when Y>—5,
[—B, when Y <—B,
where B is a nonnegative constant.
Also, for Y:®  let R:®(w), R:®(w, p) and V,®(r) be similarly defined.
In (1), the p.d.f of Y: may be rewritten as
Jqs(z,-)/a, when y;: <y,
g:(y) =1¥(z*), when y:=y*, 5)

0, otherwise,
where z;=(y:—f(x:,0))/0, and zi*=(y:*—f(x:,0))/0.

We now examine some lemmas useful for checking the consistency conditions of Ho-
adley (1971).

Lemma 1. For @=Q, there exist positive numbers p*, 7 and M such that
E [R:®(w, p)1*<M, for 0, p<p*, i=1,--, N,
and
Eo[ViO@)® <M.
Proof. From (5), the pdf of Y. is given by

r)(—f(xi,ﬂ)/a, for @ =0,
2:0(90 @)= (3@ —f(x,, 0))/a), for 0<y: < y*,
Ff((y,-*——f(xi,O))/g), for yi(o): i*,

0, otherwise,
where @()=1-¥().
Hence, for all 0@

log[g‘_(o)(yi(o) [w)/gi(ﬂ) (y‘,(l)) ] wo)]
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j-logq)(—'f(x,», 6 /%), for ». =0,
< 0= f(x, 6)/2(0")' —log e +log 0°, for 0< 3@ < pi¥,
| —logh (37— f(x,, 0)/0%), for 3.9= 3.
The right hand side is free of w, which implies that there exists M such that
Eo[R (0, )P <M,
and
E VO <M.

Lemma 2. If the distribution of Y; under w=e° differs from that under ° then
N
lim Z E(R{w))/N<QO.
N-oo 1

Proof. See Wald (1949).
Lemma 3. If lim f(x,8)=o0 for all x;, i=1,---, N,
1161100
N
lim ;E(V,-(r))/N<O.
N-x
Proof. logfgi(yilw)/g,-(yf[w")]

JR— . 0 2
U /0y (et L( LD N o 0o gy

—log¥ ((y*—f(x:,6°))/0%), for yi=y*

Therefore, E.°{sup[log{g:(yilw)/g:(y:{wD} : ||w||>7]} has an upper bound of the

form
a sup {—f(x, 6% 20 —logo : ||w||>r}+d, a>0,

which goes to —co as ||w]|—o0

Lemma 4. R.(w,p) and Vi(r) are measurable functions of y; for each 7.

Proof. The measurability of R.(w,p) and Vi(#) follows immediately from the meas-
urability of R;(w) and its supremum.

The following theorem shows the consistency of the proposed estimators.

Theorem 1. If, for w=Q, f(x.,8) is a continuous function of @ and the conditions of

Lemmas 2 and 3 hold,

« b o
WOy ——— @
Proof. From Lemmas 1 through 4, it is easy to show that the conditions of Hoadley

(1971) for consistency are satisfied.
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In practice, the conditions of lim f(x,8=occ and g>¢ cause little difficulty since
e

1 =00

we are mot intersted in the values of 6 sufficiently far from the origin in the parameter
space. Moreover, in many cases, o€ for a sufficiently small value of £>0.

We now introduce additional lemmas useful for checking the asymptotic normality
conditions of Hoadley (1971).

Lemma 5. 1f f(x:,6) has a second derivative with respect to 6, then S:g,-(yilw)dy;
is twice differentiable under the integral sign.

Proof. Since

[* g(riodn =" gl @yt g(3* (5= (3 0/,

it suffices to show that

0° »i* o 52
30,00, [ graddn={" =55 gzlodds,

which follows from the fact that g.(y:|w) belongs to an exponential family.
Lemma 6. There exists M >0 such that
E.[|9log g:(p:l@)/06,1°1<M, j=1,--,k+1.
Proof. See the proof of Lemma 1.
Lemma 7. Under the condition of Lemma 5, there exist positive constants ¢’,d, and

M’ and random variables Bi,«s(Y:) such that
az . 7
sup {| 5555 108 £:D| + HE-all <& 120} < Biea(3)

and
E{|Biap( YD) <M,

for i=1, -, N, and «, 5=1, ’k+1

Pl'OOf Defil’le Aiv¢ﬂ9 Ci.nﬂ and Diyuﬂ as fOllOWS.

Agop=sup{| (ol (i )= 0 Dfes(xi D)/2 as®] HHET],
Ci!dﬁ:SUP{l(f<xi,t>fﬂﬂ(xi7 t))/z tk+12| i 1= T},

and
D as=sup{}S'(z:*)fe(xs =S fe(xu, D] - t=Ty,

for i=1,-, N, and a, =1, -, k+1,

0 o° .
where fa:—a?:“f, faﬂ:mﬁ S (D:dS(f)/d[,

and the supremum is taken over the set T={t:||t—w|i<e, t&Q}.
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) [Ai,aﬁ+ci,aﬁ y: for y: <y/*,
Let Bi,a (y, =
’ Di,aﬁ, for vi=y.*,
Clearly,
aar 108 £.(3:10) | <Bies(5)
agaaﬁg g g: y: 4, ap i

and E|B:e«( )| <M’ for some 6>0 and M'>0,

Lemma 8. If the condition of Lemma 5 is satisfied, then log g.(¥:|®) has a continuous
and measurable second derivative with respect to o, i=1,--, N.

Proof. Obvious

The following theorem deals with the asymptotic normality of the proposed estimators.

Theorem 2. Let

I'v(@)=1/N Y'E [il -(Y<|w)<ilo »(Y~[a))>T]

N )= 7 w aw Og gx i aw g gx i

and I'(@)=lim I'v(w). In (1), if ex—2>w® and I'(w) is positive definite,
N-ooc

VN (@r—a") ——s N(O, ()
under the condition of Lemma 5.
Proof. From Lemmas 5 through 8, it can be shown that the conditions of Hoadley
(1971) for asymptotic normality are satisfied.

Remark. To test the hypothesis
Hy:6,=0,,--, 8,=0,,
the likelihood ratio
N N
A=sup TI gi(yilw)/sup TI g:(yilw)

can be used as the test statistic, where O ={w: 0=, 06,=6,",--, 0.=0,°0. If the

conditions of Theorem 2 holds, then

—2log A—2—s y2(s).
V. Numerical Examples

In this section, the proposed algorithm is studied with two examples. In order to use

the algorithm, however, another algorithm is needed to obtain least squares - estimates



Nonlinear Regression with Censored Data 53

in the maximization step. Many such algorithms are available; Hartley’s(1961) method,
steepest decent method, Marguardt’s (1963) method, etc. In this study, Marquardt’s
method is adopted since it is most frequently used.

Example 1. Table 1 gives the results of temperature accelerated life tests on electrical
insulation in 40 motoretts, originally reported by Crawford(1970). Ten motorettes were
tested at each of four temperatures. Testing was terminated at different times at each
temperature, resulting in a total of 17 failed units and 23 unfailed ones. The model used
to analyze the data assumes that;

i) for any temperature, the distribution of time to failure is lognormal,

i) the standard deviation, o, of the time to failure is constant, and

iii) the mean, g of the logarithm of the time to failure is a nonlinear function of

the following form
=0, +0:x+exp(fsx)—1,
where x=1000/(T+273.2), T is the absolute absolute temperature, and 6, 85, 6; and o

are unknown parameters.

TABLE 1. Insulation life in hours at various test temperatures

150°C 170°C 190°C 220°C

1764 408 408
2772 408 408
3444 1344 504
3542 1344 504
3780 1440 504
4860

5196

1) All 10 motoretts at 150°C still on test without failure at 8064 hours.

2) 3 motoretts at 170°C still on test without failure at 5448 hours.

3) 5 motoretts at 190°C still on test without failure at 1680 hours.

4) 5 motoretts at 220°C still on test without failure at 528 hours.

Table 2 shows the results of the proposed method for obtaining MLE's of 8, 8, 6,
and o. The final values are 8;=—5.799, 6:=4.129, 8,=0.076 and §=0. 265.

Table 3 shows the values of each parameters when the model is assumed to be u.=

0,+6,x as in Schmee and Hahn(1979). The final values are 8,= —6. 036, 6,=4.321 and
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G=0. 268.
Comparing these values and in view of the fact that the data used is linear in nature,

the proposed method seems to perform well.

TABLE 2, MLE’s of parametrs
(#s=014-6,x 4 (exp(fsx) — 1))
Iteration b, é, d, &
1 —4., 6008 4.0037 —1.0241 0.1746
2 —5.3222 3.8905 0.0635 0.2077
3 —5.5140 3.9889 0. 0660 0.2277
4 —5.6322 4. 0468 0. 0693 0. 2405
5 —5. 6826 4.0735 0. 0706 0. 2489
6 —5.7107 4. 0870 0.0728 0. 2545
7 —5.7401 4.0981 0. 0767 0. 2582
8 —b5. 7687 4.1095 0.0787 0. 2607
9 —5.7687 4.1136 0.0759 0. 2624
10 —5. 7690 4.1172 0.0736 0.2635
11 —5.7991 4.1285 0. 0755 0. 2644
12 —5.7992 4.1286 0. 0760 0.2649
TABLE 3, MLE’s of parameters (Schmee and Hahn (1969))
(x=0,+0,x)
Iteration 8, d, &
1 -—1. 0000 —1. 0000 0.1748
2 —4.9305 3. 7470 0. 2078
3 —b5.2871 3.9420 0.2277
4 —5. 5440 4.0733 0. 2406
5 —5.7125 4, 1582 0.2493
6 —5, 8227 4.2135 0. 2552
7 —5.8957 4. 2502 0. 2593
8 —5.9449 4.2749 0.2621
9 —5.9784 4,2917 0. 2641
10 —6.0014 4. 3033 0. 2654
11 —6.0173 4.3113 0. 2664
12 —6.0284 4.3168 0.2671
13 —6.0361 4.3207 0.2676

Exampie 2, This example deals with some simulation results. The model and the
experimental conditions studied are assumed to be the same as those of Example 1. At

some points of the true parameter, o=(0,,0; 0, 0), 10 random numbers are generated
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from the model for each temperature. The censoring time is assumed to be the expected
time to failure at the temperature.

The MLE’s of 6,, 8, 8, and ¢ are computed via the proposed method. These are rep-

eated 50 times for each w and the results are summarized in Table 4.

TABLE 4. Mean and standard deviation of the estimates based on 50 simulation results

0, 0. A &
True value —2.0 3.0 —~1.0 0.2
Mean of MLE —2.1365 3.0074 —1.4575 0. 1925
Std. Dev. 0. 5601 0. 2892 1. 0202 0. 0361
True Value —2.0 3.0 —1.0 0.1
Mean of MLE —1.9649 2.9956 —1.2951 0. 0982
Std. Dev. 0. 2907 0. 1458 0.4756 0.0163
True Value 2.0 3.0 —1.0 0.2
Mean of MLE 2.0149 3.0027 —1. 3258 0. 1936
Std. Dev. 0.5923 0.2813 0. 5649 0.0361
True Value 2.0 3.0 —1.0 0.1
Mean of MLE 2.0232 3.0002 —1.2138 0. 0981
Std. Dev. 0. 3047 0.1511 0.4916 0. 0160
True Value ~2.0 3.0 1.0 0.2
Mean of MLE —2. 0882 3. 0252 1. 0010 0.1813
Std. Dev. 0.5242 0. 2537 0. 1156 0. 0288
True Value —2.0 3.0 1.0 0.1
Mean of MLE —2.3413 3. 0068 1. 0017 0. 0977
Std. Dev. 0. 2789 0. 1310 0. 0059 0.0123
True Value —5.0 —2.0 0.5 0.2
Mean of MLE —5.6410 —1.4288 0. 3907 0. 1800
Std. Dev. 0. 6748 0.3116 0. 0582 0. 0296
True Value —5.0 —2.0 0.5 0.1
Mean of MLE ~—5.6135 —1.4437 0. 3769 0. 0974
Std. Dev. 0. 3533 0. 1542 0.0192 0.0116

The table indicates that the algorithm performs fairly well. The estimated are some-
what sensitive to the initial values of the parameters. This, however, is an inherent
problem in nonlinear regression situtions. It is partly due to the existence of S(z.,*)=
$(2.,*) /¥ (z,*) in Step 2. When initial values of the parameters differ from the true
values considerably, z.*=(y:—/f(x;,0))/0 is so large that #'(z.*) becomes near 0 and

the algorithm cannot go further. To prevent this, a search over several different initial
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values of the parameters is recemmended.
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