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Note on Fredholm Operator
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Seoul City University, Seoul, Korea

I. Introduction
In this paper I will give some characterizations of the Fredholm operators. The following notat-
ions are used throughout; € denote the complex field, X a Banach space over C, B(X) the Banach
algebra of bounded linear operators on X, Inv(B(X)) the set of invertible operators in B(X).
Definition 1. F(X)={T€B’X)|dim(TX) <co}
K(X)={TeB(X)| TU : compact, U closed unit ball of X}
Clearly, F(X)CB(X) is an ideal and K(X)CB(X) is a closed ideal.
Definition 2. T=B(X) is a Fredholm opertor if
D) a(T)=dim(Ker(T)) <oo
ii) TX is closed in X
i) f(T)=dim(X/TX) <o
The set of Fredholm operators is denoted #(X).
Observe that if the algebraic dimension of X/TX is finite then, by the open mapping theorem,
it follows that TX is closed in X.
It follows from the Riesz theory that if T=K(X), A#0 then 1—T=d(X),
Definition 3. The quotient algebra B(X)/K(X) whose elements are the cosets T+K(X) is a
Banach algebra under the quotient norm.(This is called the Calkin algebra.)
Definition 4. a) L.(X) is the linear space of bounded sequences {r,} of elements z,=X with

the supremum norm [ {z,} |=suplz.l.

b) m(X) is the linear subspace of [.(X) consisting of those sequences every subsequence of which
contains a convergent subsequence.
It is elementary to check that [.(X) is a Banach space and m(X) is closed. Further, for TeB(X),
{#n} €l (X) D {Tz,} €1.(X)
{z,} em(X)> Tz} em(X).
Definition 5. a) X=L.(X)/m(X)
b) For T=B(X), 7 denote the operator on X defined by f"({x,.} +m(X))=(Tzx,} +m(X).
Clearly TeB(X) and Tek(X)=T=0.

II. A review of Atkinson’s results of Fredholm operator

For T<B(X) the following statements are equivalent
1) Ted(X)



@) T+F(X)slnv(B(X)/F(X))

3) T+K(X)elnv(B(X)/K(X))

@) Tehv@B@)

Proof. (1)>(2) Assume T<®(X), then a(T)<oo, TX is of finite codimension. Then there
exist closed subspaces Z, W of X; X=Ker(T)PZ=TXDW,

T can be drawn as the 2x 2 matrix

<0 Ker(T)-»W O:2-W

T, is bijective and continuous and TX is closed. So there exists a continuous linear inverse Sy, :.
TX—Z ((1] p.57).

O : W—Ker(T) O: TX—Ker(T)
If S= , then
0. W-Z Szg . TX_>Z,
O: W—-W O:TX->W
TS=( ) n
O: W-TX I:TX-TX
O : Ker(T)—>Ker(T) O:Z—Ker(T) )

ST= (
O :Ker(T)—Z 1:2-2Z
Clearly, TS and ST are projections of finite codimension
>3 projections P,QeF(X) : TS=I-P, ST=I-Q
28 is the inverse of T modulo F(X)
ie. T+HF(X)elnv(B(X)/F(X))
(2) ©(3) is obvious
& > S+K(X)y=(T+KX)™
SEK, K,eK(X) : TS=I-K,, ST=I-K,
>8T=1=T8
>TenvBX)
(@) (1) Let T<Inv(B(X)) and choose a sequence {z,} in the unit ball of Ker(T)
D Tz} =0T ({z.} +m(X))=0
> {z,) +m(X)=0
=z Em(X)
=the unit ball of Ker(T) : compact
2a(T) <o
ii) Next we show that TX is closed in X. Since a(T) < oo, there exists a closed subspace Z of
X such that, X=Ker(T)®Z. Clearly TX=TKer(T)PZ)=TZ and T is injective on Z, so it su-
fices to show that T is bounded below on Z.
Suppose not, there exist a {z,} CZ: |z,|=1 for each n and Tz,—0,
{Tz} em(X)>T ({z,} +m(X)) =0
Dz +m(X)=0
>z eEm(X)
Thus there is a subsequence {z,} : z,~yeX



Then |y|=1 and Tz, —Ty=0, but ZNKer(T)=(0) which is a contradiction,
. TX is closed. ,
iif) Since TX is a closed, X/TX is a Banach space, it remains to prove B(T) <oo,
Let {y,} CX be a sequence satisfying ||ly,+ TX| <1 for each n.
> {z,) CX ¢ ||¥.+Tz,)| <2 for each = ‘
7 : invertible
5 {w) €1.(X) : T({wa} +m (X)) = {yat Tz} +m(X)
H{T(wa—z,) —y.} Em(X)
>3 subsequence {w,}, {z.}, nl ! TWn—2n) —yn—2zEX
D ymt+2+ TX[|—0 as k—oo (" TX is closed)
> {y.+7TX} has a convergent subsequence
Sunit ball of X/TX is compact
DB(T) <o
1)) i) > TE0 (X)

II1. Mair theorems

If TeB(X), 2 is said to be a Fredholm point of T if A—T=®(X) and the set of Fredholm
points of 7" is denoted by @ (7). If either a(T) oo or f(T)< oo we define the index i(T) of T
by i(T)y=a(T)—-B(T), and f TeB(X), p(T), o(T) denote the resolvent set and spectrum of
T, respectively.

I want to show that an index-zero Fredholm operator can be decomposed into the sum of an in-
vertible operator plus a finite rank operator, and that for TeB(X) ¢(T)\ {A=®(T) and i(A— =
0} =Noe(T+R).

ReEK (X)

Theorem 1. T=@(X) and i{(T)=0
>H SeF(X) : T+iSeInv(B(X)), A#0
Proof. As in the proof of II, we may write
O:XKer(T)-»W O:Z-W
T= ( ) where dim(W)=dim Ker(T))
O:Ker(T)-TX 0O:Z-TX
since ¢(T)=0.
Construct S&F(X) by means of the isomorphism
J:Ker(TH->W
P J:Ker(T)-»W 0:Z2-W
h (o :Ker(T)>TX O:Z-TX )
If 2#0, T+iS=Inv(B(X))
Theorem 2, TeB(X)
0(TY\(A€O(T) and i(A—T)=0} =Na(T+R)

ReK(X)

Proof. The result may be restated as follows:

(=0(T) and i~ T)=0} =Up(T+R)

ke



(D) Let XREI(LJJ{’(T‘i'R)?lEP(T‘FRo) for some R,=eK(X)
=K(X)

31—-T—-Ry=P
21— T—Ro) =0
31-Ted(X), i0—T)=0
32e0(T), iG—T)=0
() Let 2—-Ted(X), iA—T)=0

Without loss of generality take A=0.

STed(X), i(T)=0

>4 R,eK(X) : 0p(T+R,) by Theorem 1,
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