Note on Fredholm Operator

by Sang-Sup Yum
Seoul City University, Seoul, Korea

I. Introduction

In this paper I will give some characterizations of the Fredholm operators. The following notations are used throughout; C denote the complex field, X a Banach space over C, B(X) the Banach algebra of bounded linear operators on X, Inv(B(X)) the set of invertible operators in B(X).

Definition 1. $F(X) = \{T \in B(X) | \dim(TX) < \infty\}$

$$K(X) = \{T \in B(X) \mid \overline{TU} : \text{compact}, U : \text{closed unit ball of } X\}$$

Clearly, $F(X) \subset B(X)$ is an ideal and $K(X) \subset B(X)$ is a closed ideal.

Definition 2. $T \subseteq B(X)$ is a Fredholm opertor if

i)
$$\alpha(T) = \dim(\operatorname{Ker}(T)) < \infty$$

iii)
$$\beta(T) = \dim(X/TX) < \infty$$

The set of Fredholm operators is denoted $\Phi(X)$.

Observe that if the algebraic dimension of X/TX is finite then, by the open mapping theorem, it follows that TX is closed in X.

It follows from the Riesz theory that if $T \in K(X)$, $\lambda \neq 0$ then $\lambda - T \in \Phi(X)$.

Definition 3. The quotient algebra B(X)/K(X) whose elements are the cosets T+K(X) is a Banach algebra under the quotient norm. (This is called the Calkin algebra.)

Definition 4. a) $l_{\infty}(X)$ is the linear space of bounded sequences $\{x_n\}$ of elements $x_n \in X$ with the supremum norm $\|\{x_n\}\| = \sup \|x_n\|$.

b) m(X) is the linear subspace of $l_{\infty}(X)$ consisting of those sequences every subsequence of which contains a convergent subsequence.

It is elementary to check that $l_{\infty}(X)$ is a Banach space and m(X) is closed. Further, for $T \in B(X)$,

$$\{x_n\} \in l_\infty(X) \Rightarrow \{Tx_n\} \in l_\infty(X)$$

$$\{x_n\} \subseteq m(X) \Rightarrow \{Tx_n\} \subseteq m(X).$$

Definition 5. a) $\hat{X} = l_{\infty}(X)/m(X)$

b) For $T \in B(X)$, \hat{T} denote the operator on \hat{X} defined by $\hat{T}(\{x_n\} + m(X)) = \{Tx_n\} + m(X)$. Clearly $\hat{T} \in B(\hat{X})$ and $T \in K(X) \Leftrightarrow \hat{T} = \hat{O}$.

II. A review of Atkinson's results of Fredholm operator

For $T \in B(X)$ the following statements are equivalent

(1) $T \in \Phi(X)$

- (2) $T+F(X) \in Inv(B(X)/F(X))$
- (3) $T+K(X) \in Inv(B(X)/K(X))$
- (4) $\hat{T} \in \text{Inv}(B(\hat{X}))$

Proof. (1) \Rightarrow (2) Assume $T \in \Phi(X)$, then $\alpha(T) < \infty$, TX is of finite codimension. Then there exist closed subspaces Z, W of X; $X = \text{Ker}(T) \oplus Z = TX \oplus W$.

T can be drawn as the 2×2 matrix

$$T = \begin{pmatrix} O : \operatorname{Ker}(T) \to W & O : Z \to W \\ O : \operatorname{Ker}(T) \to TX & T_{22} : Z \to TX \end{pmatrix}$$

 T_{22} is bijective and continuous and TX is closed. So there exists a continuous linear inverse S_{22} : $TX \rightarrow Z$ ([1] p. 57).

$$\begin{split} & \text{If } S = \begin{pmatrix} O: W \rightarrow \text{Ker}(T) & O: TX \rightarrow \text{Ker}(T) \\ O: W \rightarrow Z & S_{22}: TX \rightarrow Z, \end{pmatrix}, \text{ then } \\ & TS = \begin{pmatrix} O: W \rightarrow W & O: TX \rightarrow W \\ O: W \rightarrow TX & I: TX \rightarrow TX \end{pmatrix} \text{ and } \\ & ST = \begin{pmatrix} O: \text{Ker}(T) \rightarrow \text{Ker}(T) & O: Z \rightarrow \text{Ker}(T) \\ O: \text{Ker}(T) \rightarrow Z & I: Z \rightarrow Z \end{pmatrix}$$

Clearly, TS and ST are projections of finite codimension

- $\Rightarrow \mathcal{I}$ projections $P, Q \in F(X)$: TS = I P, ST = I Q
- $\Rightarrow S$ is the inverse of T modulo F(X)

i.e.
$$T+F(X) \in \text{Inv}(B(X)/F(X))$$

- $(2) \Rightarrow (3)$ is obvious
- (3) \Rightarrow (4) $S+K(X)=(T+K(X))^{-1}$ $\Rightarrow EK_1, K_2 \in K(X) : TS=I-K_1, ST=I-K_2$ $\Rightarrow \hat{S}\hat{T}=\hat{I}=\hat{T}\hat{S}$ $\Rightarrow \hat{T} \in Inv(B(\hat{X}))$
- (4) \Rightarrow (1) Let $\hat{T} \in Inv(B(\hat{X}))$ and choose a sequence $\{x_n\}$ in the unit ball of Ker(T)

i)
$$\{Tx_n\} = 0 \Rightarrow \hat{T}(\{x_n\} + m(X)) = 0$$

 $\Rightarrow \{x_n\} + m(X) = 0$
 $\Rightarrow \{x_n\} \in m(X)$
 $\Rightarrow \text{the unit ball of Ker}(T) : \text{compact}$
 $\Rightarrow \alpha(T) < \infty$

ii) Next we show that TX is closed in X. Since $\alpha(T) < \infty$, there exists a closed subspace Z of X such that, $X=\mathrm{Ker}(T)\oplus Z$. Clearly $TX=T(\mathrm{Ker}(T)\oplus Z)=TZ$ and T is injective on Z, so it suffices to show that T is bounded below on Z.

Suppose not, there exist a $\{x_n\} \subset Z : ||x_n|| = 1$ for each n and $Tx_n \to 0$.

$$\begin{aligned} \{Tx_n\} &\in m(X) \Rightarrow \hat{T}(\{x_n\} + m(X)) = 0 \\ &\Rightarrow \{x_n\} + m(X) = 0 \\ &\Rightarrow \{x_n\} &\in m(X) \end{aligned}$$

Thus there is a subsequence $\{x_{n_k}\}: x_{n_k} \rightarrow y \in X$

Then ||y||=1 and $Tx_n \to Ty=0$, but $Z \cap \text{Ker}(T)=(0)$ which is a contradiction.

 $\therefore TX$ is closed.

iii) Since TX is a closed, X/TX is a Banach space, it remains to prove $\beta(T) < \infty$. Let $\{y_n\} \subset X$ be a sequence satisfying $||y_n + TX|| \le 1$ for each n.

 $\Rightarrow \mathcal{I}\{x_n\} \subset X : ||y_n + Tx_n|| \leq 2 \text{ for each } n$

 \hat{T} : invertible

$$\Rightarrow \mathcal{I}\left\{w_n\right\} \in l_{\infty}(X) : \hat{T}\left(\left\{w_n\right\} + m(X)\right) = \left\{y_n + Tx_n\right\} + m(X)$$

$$\Rightarrow \{T(w_n-x_n)-y_n\} \in m(X)$$

$$\Rightarrow \mathcal{I}$$
 subsequence $\{w_{n_k}\}$, $\{x_{n_k}\}$, $\{y_{n_k}\}$: $T(w_{n_k}-x_{n_k})-y_{n_k}\to z\in X$

$$\Rightarrow ||y_{n_k} + z + TX|| \to 0$$
 as $k \to \infty$ (: TX is closed)

- $\Rightarrow \{y_n + TX\}$ has a convergent subsequence
- \Rightarrow unit ball of X/TX is compact
- $\Rightarrow \beta(T) < \infty$
- i)ii)iii) $\Rightarrow T \in \Phi(X)$

III. Main theorems

If $T \in B(X)$, λ is said to be a Fredholm point of T if $\lambda - T \in \Phi(X)$ and the set of Fredholm points of T is denoted by $\Phi(T)$. If either $\alpha(T) < \infty$ or $\beta(T) < \infty$ we define the index i(T) of T by $i(T) = \alpha(T) - \beta(T)$, and if $T \in B(X)$, $\rho(T)$, $\sigma(T)$ denote the resolvent set and spectrum of T, respectively.

I want to show that an index-zero Fredholm operator can be decomposed into the sum of an invertible operator plus a finite rank operator, and that for $T \in B(X)$ $\sigma(T) \setminus \{\lambda \in \Phi(T) \text{ and } i(\lambda - T) = 0\}$ $0\} = \bigcap_{R \in K(X)} \sigma(T+R).$

Theorem 1. $T \in \Phi(X)$ and i(T) = 0

$$\Rightarrow \mathcal{I} S \in F(X) : T + \lambda S \in Inv(B(X)), \lambda \neq 0$$

Proof. As in the proof of II, we may write
$$T = \begin{pmatrix} O : \operatorname{Ker}(T) \to W & O : Z \to W \\ O : \operatorname{Ker}(T) \to TX & O : Z \to TX \end{pmatrix} \text{ where } \dim(W) = \dim(\operatorname{Ker}(T))$$

since i(T) = 0.

Construct $S \subseteq F(X)$ by means of the isomorphism

$$S = \begin{pmatrix} J : \operatorname{Ker}(T) \to W & O : Z \to W \\ O : \operatorname{Ker}(T) \to TX & O : Z \to TX \end{pmatrix}$$

If $\lambda \neq 0$, $T + \lambda S \in Inv(B(X))$

Theorem 2. $T \in B(X)$

$$\Rightarrow \sigma(T) \setminus \{\lambda \in \Phi(T) \text{ and } i(\lambda - T) = 0\} = \bigcap_{R \in K(X)} \sigma(T + R)$$

Proof. The result may be restated as follows:

$$\{\lambda \in \Phi(T) \text{ and } i(\lambda - T) = 0\} = \bigcup_{R \in K(X)} \rho(T + R)$$

(
$$\supset$$
) Let $\lambda \in \bigcup_{R \in K(X)} \rho(T+R) \Rightarrow \lambda \in \rho(T+R_0)$ for some $R_0 \in K(X)$
 $\Rightarrow \lambda - T - R_0 \in \Phi$
 $\Rightarrow i(\lambda - T - R_0) = 0$
 $\Rightarrow \lambda - T \in \Phi(X), i(\lambda - T) = 0$

$$\Rightarrow \lambda \in \Phi(T), \ i(\lambda - T) = 0$$

(\subset) Let $\lambda - T \in \Phi(X)$, $i(\lambda - T) = 0$

Without loss of generality take $\lambda = 0$.

$$\Rightarrow T \in \Phi(X), i(T) = 0$$

$$\Rightarrow \mathcal{I} R_1 \in K(X) : 0 \in \rho(T+R_1)$$
 by Theorem 1.

References

- 1. Dunford, N., Schwartz, J.T., Linear Operators, Part I, (Wiley-Interscience) New York, 1958.
- 2. Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I, (Springer) New York, 1977.
- 3. Caradus, S.R., Pfaffenberger, W., Yood, B., Calkin Algebras and Algebras of Operators on Ban-ach Spaces, (Dekker) New York, 1974.
- 4. Kato, T., Perturbation theory for nullity deficiency and other quantities of linear operators, J. Analyse Math. 6, 273-322, 1958.