ON THE EXISTENCE PROBLEM OF A CERTAIN
PARTIAL DIFFERENTIAL EQUATIONS

BY BYUNG HO YOON

1. Introduction

For a point \(x = (x^1, x^2, \ldots, x^n) \) in the \(n \)-dimensional Euclidean space \(\mathbb{R}^n \), we denote its norm by \(||x|| \). Throughout this note we will denote by \(B \) the open unit disk

\[
\{(u,v) : u^2 + v^2 < 1\}
\]

in \(\mathbb{R}^2 \), the boundary of \(B \) will be denoted by \(\partial B \) and the closure by \(\overline{B} \).

Consider two continuous functions \(\xi_i : \partial B \to \mathbb{R}^n, i = 1, 2 \). Let \(\varphi \) be a sense preserving homeomorphism of \(\partial B \) onto itself and define

\[
\delta(\varphi) = \max_\partial ||\xi_1(\theta) - \xi_2(\varphi(\theta))||.
\]

The Frechét distance \(d(\xi_1, \xi_2) \) between \(\xi_1 \) and \(\xi_2 \) is then defined to be

\[
d(\xi_1, \xi_2) = \inf_\varphi \delta(\varphi)
\]

where the infimum is taken over all sense preserving homeomorphisms \(\partial B \) onto itself. The distance so defined is non-negative, symmetric and satisfies the triangle inequality.

If \(d(\xi_1, \xi_2) = 0 \), then we say two functions \(\xi_1 \) and \(\xi_2 \) are Frechét equivalent. A Frechét curve \(\Gamma \) is an equivalence class of functions in \(C(\partial B) \), i.e. continuous on \(\partial B \), under Frechét equivalence. But we will delete the word Frechét and simply call it curve. An element of the equivalence class is called a representation of the curve.

A curve \(\Gamma \) is called a Jordan curve if it has a representation which is a homeomorphism and such a representation is called topological. Further, it is customary to use the same term, Jordan curve, to mean a subset of \(\mathbb{R}^n \) which is the common graph of representations of \(\Gamma \).

If \(\Gamma_1 \) and \(\Gamma_2 \) are two curves in \(\mathbb{R}^n \) and if \(\xi_1 \) and \(\xi_2 \) are any representations of \(\Gamma_1 \) and \(\Gamma_2 \), respectively, then the Frechét distance between \(\Gamma_1 \) and \(\Gamma_2 \) is defined by \(d(\Gamma_1, \Gamma_2) = d(\xi_1, \xi_2) \).

Suppose \(\Gamma \) and \(\Gamma_n, n = 1, 2, \ldots \), are curves. If \(d(\Gamma, \Gamma_n) \to 0 \) as \(n \to \infty \), then we say \(\Gamma_n \) converges to \(\Gamma \) in the sense of Frechét.

A surface in \(\mathbb{R}^n \) is a continuous map \(\zeta = (\zeta^1, \ldots, \zeta^n) \) of \(\partial B \) into \(\mathbb{R}^n \) and \(\zeta|\partial B \) is called the boundary of the surface \(\zeta \). If \(\zeta|\partial B \) is a representation of a Jordan curve \(\Gamma \), then we say \(\zeta \) is bounded by \(\Gamma \). All the notions above for Frechét curves can be analogously defined but we omit the details and simply refer to [8].

For a surface \(\zeta(u,v) = (\zeta^1(u,v), \ldots, \zeta^n(u,v)) \), \((u,v) \in \overline{B} \), we will consistently use the following notations:

\[
E = \zeta_u \cdot \zeta_u = \zeta_u \cdot \zeta_u = \sum_{i=1}^{n} (\zeta_i')^2
\]

This research was supported by MOE grant, 1982.
Byung Ho Yoon

\[F = \zeta_x \zeta_y \]
\[G = \zeta_x \zeta_y = \zeta_z^2 \]

The problem we wish to investigate in this note is the following:

Given a Jordan curve \(r' \) in \(\mathbb{R}^n \), we wish to show the existence of a surface \(\zeta \) satisfying the following conditions.

1. \(\zeta \) and \(\zeta_j \), \(j = 1, 2, \ldots, n \), are continuous on \(\mathbb{B} \) and harmonic in \(\mathbb{B} \).
2. \(\zeta \) satisfies the partial differential equations \(E = G \) and \(F = 0 \).
3. \(\zeta \mid \partial \mathbb{B} \) is a topological representation of \(r' \).

This problem was first solved in 1930, independently by J. Douglas [2] and T. Rado [4]. Their work on the problem was later simplified by R. Courant [1]. We shall give an independent solution to this problem by considering it as a one dimensional variational problem using a method of trigonometrical series where by giving some basis for obtaining an approximation.

The following results, most of which can be found in [6], will be needed for the subsequent argument.

Let us denote by \(\mathcal{C}_c^\infty (\mathbb{B}) \) the class of real functions \(g \) which are of class \(C^\infty \) in \(\mathbb{B} \) with a compact support in \(\mathbb{B} \). Elements of \(\mathcal{C}_c^\infty (\mathbb{B}) \) will be called test functions. A function \(f: \mathbb{B} \to \mathbb{R} \) is said to belong to the class \(\mathcal{H}_c^1 (\mathbb{B}) \) if \(f \in L^2 (\mathbb{B}) \) and if there exist real functions \(\phi \in L^2 (\mathbb{B}) \), \(\alpha = 1, 2 \), such that

\[
\int \int_{\mathbb{B}} g(u, v) \phi_\alpha (u, v) \, du \, dv = - \int \int_{\mathbb{B}} g(u, v) f(u, v) \, du \, dv
\]

for all test functions \(g \) where \(g_1 = g_x \) and \(g_2 = g_y \). The functions \(\phi \) are uniquely determined up to null functions and if \(f \in H^1_c (\mathbb{B}) \) and \(f^* (u, v) = f(u, v) \) a.e in \(\mathbb{B} \), then \(f^* \in H^1_c (\mathbb{B}) \) and the same functions \(\phi \) will work for \(f^* \). We call \(\phi \) (determined up to null functions) the distribution derivative of \(f \). If \(f \) has first partials which are \(L^2 \)-integrable in \(\mathbb{B} \), then the distribution derivatives will be the corresponding partial derivatives.

If \(\zeta = (\zeta^1, \ldots, \zeta^n) \) is a vector function of \(\mathbb{B} \) into \(\mathbb{R}^n \), then we say \(\zeta \) is of class \(H^1_c (\mathbb{B}) \) in case each of its components is of class \(H^1_c (\mathbb{B}) \).

For a surface \(\zeta \in C(\mathbb{B}) \cap H^1_c (\mathbb{B}) \), the Dirichlet integral of \(\zeta \) is defined by

\[
D(\zeta) = \int \int_{\mathbb{B}} (\zeta^2_x + \zeta^2_y) \, du \, dv = \int \int_{\mathbb{B}} (E + G) \, du \, dv.
\]

In section 2, we shall show that among all the surfaces \(\zeta \in C(\mathbb{B}) \cap H^1_c (\mathbb{B}) \) there is one which minimizes the Dirichlet integral that is, moreover, a harmonic surface and then, in section 3, we shall prove that this minimizing surface satisfies the conditions (2) and (3) of the problem.

The following theorem due to Morrey [7] is essential.

Theorem. If \(S \) is an open nondegenerate Frechet surface of finite Lebesgue area, then \(S \) has at least one representation of class \(C(\mathbb{B}) \cap H^1_c (\mathbb{B}) \) which satisfies the condition \(E = G \), \(F = 0 \).

2. Existence Theorem

At the outset, we assume that there exists at least one surface bounded by \(r' \) with
On the existence problem of a certain partial differential equations 67

a finite Dirichlet integral. Note, by the Dirichlet principle, that if \(\zeta \in C(B) \cap H^1(B) \) and if \(h \) is a surface harmonic in \(B \) such that \(h|\partial B \) coincides with \(\zeta|\partial B \), then \(D(h) \leq D(\zeta) \). Hence in order to find a surface of minimum Dirichlet integral, we may restrict ourselves to the class of harmonic surfaces which are bounded by \(\Gamma \). Our existence proof depends on the following well known lemmas.

Lemma 1. [6] Suppose \(\zeta_n \) and \(\zeta \), \(n = 1, 2, \ldots \), are surfaces in the class \(C(B) \cap H^1(B) \).
If \(\zeta_n \) converges to \(\zeta \) on \(B \) and if the convergence is uniform in every closed subdomain of \(B \), then

\[
D(\zeta) \leq \lim \inf_n D(\zeta_n).
\]

Lemma 2. [1] The Dirichlet integral is invariant under a conformal map.

Let \(\{S_n\} \) be a sequence of surfaces. We say \(\{\zeta_n|\partial B\} \) satisfies the three point condition if, for some convenient points \(p_i \in \partial B \) (\(i = 1, 2, 3 \)) and for some positive constant \(m \), we have

\[
\|p_i - p_j\| > m, \quad \|\zeta_n(p_i) - \zeta_n(p_j)\| > m, \quad i = j, \quad j = 1, 2, 3
\]

for all \(n \).

Lemma 3. [8] Let \(S_n \), \(n = 1, 2, \ldots \), be a sequence of Frechet surfaces such that \(\partial S_n \) converges to a Jordan curve \(\Gamma \) in the sense of Frechet. Suppose \(\zeta_n \in C(B) \cap H^1(B) \) is a representation of \(S_n \) with \(D(\zeta_n) < k \) (\(k \) a constant) and suppose that \(\{\zeta_n|\partial B\} \) satisfies the three point condition. Then \(\{\zeta_n|\partial B\} \) is equicontinuous.

From this lemma we note that if \(\{h_n\} \) is a sequence of harmonic surfaces bounded by \(\Gamma \) with \(D(h_n) < k \) for some constant \(k \) and if \(\{h_n|\partial B\} \) satisfies the three point condition, then, by the maximum principle, \(\{h_n\} \) is sequentially compact with respect to the uniform convergence.

Now suppose \(\Gamma \) is given in some initial topological representation \(g(t) = (g^1(t), g^2(t), \ldots, g^n(t)) \) from which its general topological representation may be obtained by a relation \(t = \xi(\theta) \) defining a one-to-one and continuous map from \(\partial B \) onto itself. Let us denote by \(\Omega \) the class of all those maps \(\xi \) of \(\partial B \) onto itself which are one-to-one, continuous and leave three distinct points \(p_1, p_2, p_3 \) of \(\partial B \) fixed. Thus if \(\xi \in \Omega \), then the composite map \(g \circ \xi \) is a topological representation of \(\Gamma \) which maps \(p_1, p_2, p_3 \) of \(\partial B \) into three distinct fixed points \(g(p_1), g(p_2), g(p_3) \) of \(\Gamma \).

A disadvantage in dealing with the class \(\Omega \) is that it is not closed under uniform convergence. Thus we consider the class \(\Delta \) of those maps \(\xi \) of \(\partial B \) onto itself which are continuous, monotone and leave three distinct points \(p_1, p_2, p_3 \) of \(\partial B \) fixed. Thus \(\Omega \) is a subclass of \(\Delta \) and it is clear that \(\Delta \) is closed under uniform convergence. And we note that, for each \(\xi \in \Delta \), we get a representation \(g \circ \xi \) and the class of all such representations has the three point property.

Consider now, for each \(\xi \in \Delta \), the corresponding representation

\[
g \circ \xi = (g^1 \circ \xi, g^2 \circ \xi, \ldots, g^n \circ \xi)
\]

and expand in a Fourier series

\[
(g^j \circ \xi)(\theta) \sim -\frac{a_j(\xi)}{2} + \sum_{k=1}^m (a_{jk}(\xi) \cos k\theta + b_{jk}(\xi) \sin k\theta).
\]

\(j = 1, 2, \ldots, n \), where
Byung Ho Yoon

If \(h_j, \ j=1, 2, \ldots, n \), are the harmonic functions determined by the boundary values \(g^j \xi \), \(j=1, 2, \ldots, n \), respectively, then they are given by

\[
h_j(u, v) = \frac{a_{h_j}(\xi) - \sum_{k=1}^n r^k (a_{h_k}(\xi) \cos k\theta + b_{h_k}(\xi) \sin k\theta)}{2},
\]

for \(0 \leq r < 1 \), where \(u = r \cos \theta \) and \(v = r \sin \theta \).

For notational convenience, we shall write

\[
a_k = (a_1, a_2, \ldots, a_n),
\]
\[
b_k = (b_1, b_2, \ldots, b_n),
\]
\[
a^2 = \sum_{j=1}^n a_j^2, \quad b^2 = \sum_{j=1}^n b_j^2, \quad a b = \sum_{j=1}^n a_j b_j,
\]

and the corresponding expression for the harmonic surface

\[
h = (h_1, h^2, \ldots, h^n) \quad (2.3)
\]

Let \(H \) denote the set of harmonic surfaces \((2.3) \) determined by all \(\xi \in \Delta \). We note that if \(\xi \in \Omega \), then the corresponding harmonic surface \(h_\xi \) is bounded by \(\Gamma \) and that \(h_\xi |\partial B = g^\xi \) so that it is a topological representation of \(\Gamma \). We also note that if \(h \) is an arbitrary harmonic surface (not necessarily in \(H \)) bounded by \(\Gamma \), then we can find a conformal map \(T: B \rightarrow B \) such that the restriction of \(\xi = h \circ T \) on \(\partial B \) satisfies the three point condition. Thus if \(h_0 \) denotes the harmonic surface determined by \(\xi |\partial B \), then \(h_0 \in H \) and, by Lemma 2 and by the Dirichlet principle,

\[
D(h_0) \leq D(\xi) = D(h).
\]

Thus in order to minimize the Dirichlet integral over the class of harmonic surfaces bounded by \(\Gamma \), it is sufficient to consider the problem of minimizing it over the class \(H \).

Now, for each \(h \in H \), consider the Dirichlet integral

\[
D(h) = \iint_D (E+G) \ du \ dv \quad (2.4)
\]

In polar coordinate this becomes

\[
D(h) = \int_0^{2\pi} \int_0^r \left(h^2 + \frac{1}{2} h^2 \right) r \ dr \ d\theta \quad (2.5)
\]

Since \(D(h) \) is determined by \(g^\xi \) and since \(g \) is held fixed, we let

\[
P(\xi) = J(g^\xi) = \pi \sum_{k=1}^n k (a_k^2(\xi) + b_k^2(\xi)) \quad (2.6)
\]

and consider the equivalent problem of minimizing \(P \) over the class \(\Delta \).

Note that, by Lemma 1, the functional \(P \) of (2.6) is also lower semicontinuous on the class \(\Delta \) with respect to uniform convergence: in fact, if \(\{\xi_n\} \) is a sequence of elements of \(\Delta \) which converges uniformly to an element \(\xi \in \Delta \) and if \(h_{\xi_n} \) and \(h_\xi \) are the corresponding harmonic surfaces, then by the maximum principle, \(h_{\xi_n} \) converges
On the existence problem of a certain partial differential equations

uniformly to \(h^* \) so that

\[
P(\xi) = D(h^*) \leq \lim inf \ D(h_{\xi_m}) = \lim inf \ P(\xi_m).
\]

Also note that if a sequence \(\{g \circ \xi_m\}, \xi_m \in \mathcal{A} \), converges uniformly to a representation \(\tau \) of \(\Gamma \), then \(\xi_m \) converges uniformly to \(g^{-1}(\tau) \) and this belongs to the class \(\mathcal{A} \).

Now since we are dealing with the problem of minimizing \(P \), we may assume that there is a constant \(k \) such that \(P(\xi) \leq k \) for all \(\xi \in \mathcal{A} \). By Lemma 3 and by the above remark, \(\mathcal{A} \) is compact with respect to the topology of uniform convergence. Since \(P \) is lower semicontinuous, it follows that \(P \) attains a minimum on \(\mathcal{A} \).

3. Property of the Minimizing Surface

Let \(\xi^* \) denote the element of \(\mathcal{A} \) which minimizes \(P \) and let \(h^* \) be the corresponding harmonic surface. In this section we shall show that \(h^* \) satisfies the condition \(E=G \) and \(F=0 \).

Because there is no a priori reason to believe that \(h^*|\partial B \) is differentiable we will require the following theorem, known as the sewing theorem.

Sewing Theorem. [1] Suppose that the plane domain \(G_+ \) (consisting of the exterior of an analytic curve \(C_+ \)) and \(G_- \) (consisting of the interior of another analytic closed curve \(C_- \)) are combined into one region \(G \) by an analytic transformation \(z_+ = t(z_-) \) that establishes a biunique correspondence between all the points \(A_+ \) on \(C_+ \) and \(A_- \) on \(C_- \). Then the domain \(G_+ \) and \(G_- \) can be mapped conformally onto two domain \(G'_+ \) and \(G'_- \), respectively, in such a way that \(C_+ \) and \(C_- \) are transformed into the same curve \(C' \), that \(G_+ \) is transformed into the exterior of \(C' \) and \(G_- \) into the interior of \(C' \) and, further, that corresponding points \(A_+ \) and \(A_- \) go into the same point \(A' \) on \(C' \). In other words, by a conformal mapping two separated components \(G_+ \) and \(G_- \) can be fitted together into a single domain \(G' \):

Let \(r_0, 0<r_0<1 \), be an arbitrary but fixed number and cut the unit disk \(B \) along the circle \(\partial B_{r_0} \), the circle with center at the origin and radius \(r_0 \). If \(\lambda \) is a real analytic function and is periodic of period \(2\pi \), then there exists an \(\epsilon_0 \) such that the function \(\varphi_\epsilon(\theta) = \theta + \epsilon \lambda(\theta) \) for \(|\epsilon| \leq \epsilon_0 \) is analytic and biunique. Let \(B^*(\epsilon) \) denote the domain obtained by identifying the point \((r_0, \theta) \) on the outer edge of the cut with the point \((r_0, \theta + \epsilon \lambda(\theta)) \) on the inner edge. Then, by the sewing theorem, there exists a conformal map \(T^* \) from \(B^*(\epsilon) \) onto \(B \). In order to see this, let \(G_- \) be the domain obtained from \(B_{r_0} \) by the transformation \((r, \theta) \rightarrow (r, \theta + \epsilon \lambda(\theta)) \) and let \(G_+ \) be the domain consisting of the exterior of \(\partial B_{r_0} \). If we denote by \(G \) the domain consisting of \(G_+ \) and \(G_- \), then, by the sewing theorem, there exists a conformal map \(T \) from \(G \) onto the whole plane. Let \(C \) be the image of \(\partial B \) under \(T \) and let \(T' \) be the conformal map from the domain bounded by \(C \) onto \(B \). Then \(T^* = T' \circ T \) is the conformal map from \(B^*(\epsilon) \) onto \(B \).

Now consider the function \(h^* (r_0, \theta + \epsilon \lambda(\theta)) \), \(|\epsilon| \leq \epsilon_0 \), which is defined on \(\partial B_{r_0} \), and denote by \(h_\epsilon \) the function harmonic in \(B_{r_0} \) determined by the boundary value \(h^* (r_0, \theta + \epsilon \lambda(\theta)) \). And define a function \(\zeta_\epsilon \) by

\[
\zeta_\epsilon(r, \theta) = \begin{cases} h_\epsilon(r, \theta) & \text{if } (r, \theta) \in B_{r_0} \\ h^*(r, \theta) & \text{if } (r, \theta) \in B - B_{r_0} \end{cases}
\]
Let \(\zeta^* = T^* \zeta_0 \), then \(\zeta^* \) is continuous and piecewise smooth on \(B \), and by Lemma 2, we have \(D(\zeta^*) = D(\zeta_0) \). Since \(h^* \) minimizes the Dirichlet integral, it follows that
\[
D(h^*) \leq D(\zeta^*). \tag{3.1}
\]
Thus if we denote by \(D_0 \) the Dirichlet integral over the disk \(B_{r_0} \), then (3.1) and Lemma 2 imply
\[
D_0(h^*) \geq D_0(h^*) \tag{3.2}
\]
because \(\zeta_0 \) and \(h^* \) coincide in \(\overline{B - B_{r_0}} \). We shall use this relation to find the characteristic property of \(h^* \).

Consider the Fourier series expansion of the function \(h^*(r_0, \theta + \varepsilon \lambda(\theta)) \) which is defined on \(\partial B_{r_0} \)
\[
h^*(r_0, \theta + \varepsilon \lambda(\theta)) = \frac{a_0(\varepsilon)}{2} + \sum_{k=1}^{\infty} (a_k(\varepsilon) \cos k\theta + b_k(\varepsilon) \sin k\theta)
\]
where \(a_k(\varepsilon) \) and \(b_k(\varepsilon) \) are the Fourier coefficients of the function \(h^*(r_0, \theta + \varepsilon \lambda(\theta)) \) which depend upon \(\varepsilon \).

Then the function \(h_\varepsilon \) harmonic in \(B_{r_0} \) with the boundary value \(h^*(r_0, \theta + \varepsilon \lambda(\theta)) \) is given by
\[
h_\varepsilon(r, \theta) = \frac{a_0(\varepsilon)}{2} + \sum_{k=1}^{\infty} \left(\frac{r}{r_0} \right)^k (a_k(\varepsilon) \cos k\theta + b_k(\varepsilon) \sin k\theta)
\]
\[0 \leq r < r_0\]
Hence the Dirichlet integral of (3.3) over the disk \(B_{r_0} \), which depends on \(\varepsilon \), is given by
\[
\Psi(\varepsilon) = D_0(h_\varepsilon) = \int_0^{2\pi} \int_0^{r_0} \left(h_{r, \theta}^* + \frac{1}{r^2} h_{\theta, \theta}^* \right) r dr d\theta
\]
\[= \pi \sum_{k=1}^{\infty} [a_k(\varepsilon) + b_k(\varepsilon)] \tag{3.4}
\]
where \(h_{r, \theta}^* \) and \(h_{\theta, \theta}^* \) denote the partial derivatives of \(h^* \) with respect to \(r \) and \(\theta \), respectively. Using an elementary argument, it is easy to show that (3.4) can be differentiated termwise.

Since \(D_0 \) attains minimum at \(h^* \), the function \(\Psi \) attains minimum at \(\varepsilon = 0 \). Hence \(\Psi'(0) = 0 \). Thus after differentiating \(\Psi \) term-by-term with respect to \(\varepsilon \) and putting \(\varepsilon = 0 \), we get
\[
\sum_{k=1}^{\infty} k(a_k(0)) \int_0^{2\pi} h_{r, \theta}^* (r_0, \theta) \lambda(\theta) \cos k\theta d\theta + b_k(0) \int_0^{2\pi} h_{\theta, \theta}^* (r_0, \theta) \lambda(\theta) \sin k\theta d\theta = 0 \tag{3.5}
\]
Note that
\[
h^*(r_0, \theta) = \frac{a_0^*(\xi^*)}{2} + \sum_{k=1}^{\infty} r_k^* (a_k^* \cos k\theta + b_k^* \sin k\theta)
\]
where \(a_k^* = a_k(\xi^*) \) and \(b_k^* = b_k(\xi^*) \), and also note that this series converges uniformly and absolutely since \(0 < r_0 < 1 \). Thus integrating termwise, we get
\[
a_k(0) = \frac{1}{\pi} \int_0^{2\pi} h^*(r_0, \theta) \cos k\theta d\theta
\]
\[= \frac{1}{\pi} \int_0^{2\pi} \left\{ \frac{a_{0k}^*}{2} + \sum_{k=1}^{\infty} r_k^* (a_k^* \cos n\theta + b_k^* \sin n\theta) \right\} \cos k\theta d\theta
\]
On the existence problem of a certain partial differential equations

\[= r^*_a a^*_a. \]

Similarly, \(b_4(0) = r^*_b b^*_b. \) Hence (3.5) becomes

\[\sum_{k=1}^\infty k r^*_k \left(a^*_k \int_0^{2\pi} h^*_k(r_0, \theta) \lambda(\theta) \cos k \theta \, d\theta
+ b^*_k \int_0^{2\pi} h^*_k(r_0, \theta) \lambda(\theta) \sin k \theta \, d\theta \right) = 0 \]

But

\[h^*_k(r_0, \theta) = \sum_{k=0}^\infty (a^*_k \cos k \theta + b^*_k \sin k \theta) \]

Since the last series converges uniformly and since both \(h^*_k \) and \(\lambda \) are analytic functions of \(\theta \), we can integrate this series term-by-term after taking the inner product with \(r_0 h^*_k(r_0, \theta) \lambda(\theta) \) and get

\[\int_0^{2\pi} r_0 h^*_k(r_0, \theta) h^*_k(r_0, \theta) \lambda(\theta) \, d\theta = 0 \]

Since \(\lambda(\theta) \) can be \(\sin k \theta \) and \(\cos k \theta, \) \(k=1,2,\ldots, \) it follows that all Fourier coefficients of the function

\[r_0 h^*_k(r_0, \theta) \]

are zero. But this is an analytic function of \(\theta \), so that we have

\[r_0 h^*_k(r_0, \theta) h^*_k(r_0, \theta) \equiv 0. \]

Since \(r_0 \) is also arbitrary, we conclude that \(h^*_k \) must satisfy the condition

\[r h^*_k(r, \theta) h_\theta(r, \theta) \equiv 0 \]

\[(3.7) \]

in \(B. \)

We now show that the equation (3.7) implies \(E=G \) and \(F=0 \) from which we see that \(h^* \) satisfies the condition (2) of the problem.

Let \(f=(f^1, f^2, \ldots, f^n) \) be the holomorphic function whose real part is \(h^* \) (componentwise) and let \(h^* \) be the harmonic conjugate of \(h^* \) which vanishes at the origin. Then \(h^* \) and \(h^* \) satisfy the Cauchy–Riemann equations

\[h^*_r = h^*_\theta, \quad h^*_\theta = -h^*_r \]

and the derivative of \(f \) is given by

\[f'(w) = h^*_r(u, v) + i h^*_\theta(u, v) \]

\[= h^*_r(u, v) - i h^*_\theta(u, v). \]

Thus

\[(f')^2 = (h^*_r^2 - h^*_\theta^2) - 2i h^*_r h^*_\theta \]

\[= (E-G) - 2i F \]

\[(3.8) \]

Now in polar coordinate the Cauchy–Riemann equation becomes

\[r h^*_r = h^*_\theta, \quad h^*_\theta = -r h^*_r \]

and the derivative of \(f \) is given by

\[f' = e^{-i\theta} (h^*_r + i h^*_\theta) \]

Multiplying by \(w = re^{i\theta} \), we have

\[w f' = r (h^*_r + i h^*_\theta) \]

so that

\[w^2 f'^2(w) = r^2 (h^*_r^2 - h^*_\theta^2 + 2i h^*_r h^*_\theta). \]

Since \(r h^*_r = -h^*_\theta \), it follows that

\[-2 r h^*_r(r, \theta) h^*_\theta(r, \theta) = \text{Im} \, w^2 f'^2(w). \]
But $w_2f''(w)$ is holomorphic in B and $rh^2h^2=0$. So w^2f'' must be constant which vanishes at $w=0$. Hence $w^2f''(w)\equiv 0$ so that we have $f''(w)\equiv 0$. Thus, from (3.8), we get $E=G$ and $F=0$ in B.

The fact that $h^*|\partial B$ is a topological representation of Γ follows from the following well known theorem: thus the surface h^* with the minimum Dirichlet integral solves our existence problem.

Theorem 4. Suppose ζ is a surface which satisfies conditions (1) and (2) of the problem we set. If $\zeta|\partial B$ is a continuous map of ∂B onto Γ which carries three distinct points of ∂B into three distinct points of Γ, then $\zeta|\partial B$ is one-to-one: i.e. is a topological representation of Γ.

References