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—Subset Selection Procedures for
Weibull Populations —

ABSTRACT

In this paper, subset selection procedures are proposed for selecting the Weibull population with the
smallest scale parameter out of # Weibull populations with a common shape parameter. The proposed pro-
cedures are based on the maximum likelihood estimators. The constants to implement the procedures are
tabulated using Monte Carlo methods. Also, the results of a comparison study are given.

1. INTRODUCTION

In metallurigical fatigue life testing under
different levels of stress, it is a common practice
that the underlying distribution of stress cycles to
failure at each level is assumed to be a two-para-
meter Weibull distribution.

Furthermore, there is a conjecture and strong
experimental evidences, as pointed out by Park
(1979) and Hahn and Kim (1976), that the shape
parameters are independent of applied level of
stress. This implies then that the underlying distri-
butions are two-parameter Weibull distributions
with a common shape parameter & and different
scale parameters §, , ..., B,,

F@=1—exp{—(x/8)), x>0

(1=1,2, YD RRETERLE a.n

Let 8;,, <... <@, denote the ordered
scale parameters. Then the population (level)
with the smallest scale parameter §,,, is the one
with the smallest mean stress cycles, and will be
called the ‘best’ population. Here, we are inter-
ested in selecting a non-empty subset of popula-
tions containing the best one. Such a selection is
called a correct selection (CS).

Following. the subset selection approach, any
subset selection procedure R is required to have
the probability of a CSat least a preassigned num-
ber P*,i.e.,

inf P{ CS|R} > P*
where 1 / k< P*< 1.

Some early works on the problem of choosing
the best of two Weibull popultions were done by
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Qureishi (1964), Qureishi et al (1965) and
Thoman and Bain (1969). For the same problem,
Schafer and Sheffield (1976) achieved some im-
provement by using the pooled estimator. Barlow
and Gupta (1969) and Patel (1976) proposed
subset selection procedures for certain families of
populations. Recently, Kingston and Patel (1980)
treated the selection problem following the
indifference-zone approach.  However, subset
selection procedures have not been proposed in
the literature for 2 Weibull populations.

Section 2 treats the case of 2 common un-
known shape parameter. Basic results by Park
(1979) on the pooled estimation of the common
shape parameter are reviewed, and subset selection
procedures. are proposed. The constants to im-
plement the procedures are given in Table I. These
constants

are computed using Monte Carlo

methods.  Also, the results of the comparison
study through Monte Carlo sampling are given in
Table A.

In Section 3, we propose a subset selection
procedure for the case of a common known shape
parameter. It is pointed out that the constants to
implement the procedure can be computed by an

existing table.

2. THE CASE OF A COMMON UNKNOWN
SHAPE PARAMETER

Let m, denote the Weibull population with the
cdf in (1.1), where the common shape parameter a
and the scale parameter §; are unknown.

Then, it can be easily shown that the likeli-
hood equation for the random sample X\, ..., X;x
from = is given as follows;

_éXfi log X i:l log Xi; )
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Based on the above likelihood equation, Park
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(1979) has suggested the following three methods

of pooled estimation:

(a) Averaging MLE: Let 4, denote the solution of
(2.1). Then the averaging maximum likeli-
hood estimator (MLE) a of a is defined by

£

a; /k.

1

1 M=

(b) Normalized MLE: Since the shape parameter
ais free from scale changes, pooled estimation
of & can be obtained by normalizing X, ...,
X by Yi; = X /B-(1= 1, ..., k) (=1, ...m).
Then, the normalized MLE & of « is the solu-

tion of the following likelihood equation:

3 n - £ n
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Note that the scale parameter f,, ..., §, are

unknown. Hence, they are replaced by the
MLE g, based on Xy, ..., X,, for normalizing
the data.

(c) Joint MLE: The likelihood equation for the
pooled observations of Xy, .., X;, (i=1, ..k)
is

n I3
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The solution & of this equation is called the
joint MLE of a.

For national convenience, let a* denote any
one of pooled estimator of a given in (a), (b) and
(c). We also denote the corresponding MLE of g,
by

Bt =( g,XJ*/”)V‘*( i=1,, k), (2.3)
representing any one of §;, ; and f,.

The key result for using the Monte Carlo
method is the following theorem, which can be
proved by using the same approach as in the proof
of Theorem B of Thoman, Bain and Antle (1969).
Hence the proof of the following theoren: is



omitted.

Theorem 1. The joint distribution of a* log (8%/
B,) (=, ..., k) is independent of g8, ...,

It follows from Theorem 1 that the joint
distribution of a*log (B7/B) (=1, .., k)
is the same as the joint distribution of a*log 8
(t=1,..., k) based an the samples from the Weibuil
populations with a =<1 and §; = 1,i.e., the expon-
ential populations.

The selection procedures we propose are
based on the MLE’s defined by (a), (b), (c¢) and
(2.3). The selection procedures are defined by

R, Select m; if and only if
logﬁ,.glrg_i?k log g;+ d/a, 2.9

Ry . Select m; if and only if

log B;< min log B, + d /&, (2.5

[ES LY 1

R; . Select m;if and only if

log B;< min log B;+ d /@&, 2.6)
1€ <k
where d=d (n, k,P*) > 0 is to be determined sub-
ject to the P*-condition (1.2.).

Theorem 2. For the selection procedures R, ,
Ryand g, the infimum of the probability of CS
occurswhenf, =...=f, =landa=1.

Proof. To compute the probability of CS, we may
assume without loss of generality that 8, <8, <
.. < 8, . Let R* denote any one of the proce-
dures R,, Ry and R,.
Then, for all 8, ..., 8, and &, we have

P{CR|R*} =P { log p* < min log 8¢
isi <k
+d/a*}

=P { log (B*/B1) < 1og (B} /)

+d/a* + log(B;/ B0, j=2

...... k)
> P{log (B*/ p) < log(8*/8;)
+d/a*,]:2' ...... ’k}

=P {a*log(gt/p)<min a*(8}/6)

+d)
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B, and a.

Thus, by Theorem 1, the infimum of the pro-
bability of CS occurs when 8, = ... =8, =1 and
a=1.

1t follows from Theorem 2 that the constants
d=d (n, k, p*) satisfying the P*-condition (1.2) can
be found by the lower 100P* percentage points
of the distributions of

a*(log ¥ —min log 8¥) 2.7
25 55k

when the samples are drawn from £ independent
exponential populations. The distributions of
(2.7) were obtained by the Monte Carlo method.
These were based on the simulations ¢ 1000
random samples of size # x k which were perform-
ed at Seoul National University on IBM 370.

The constants d=d (n, k, P*) for the selection
procedures R,, R, and R, are given in Table I
at the end of this paper for P*=0.90, 0.95, 0.99,
k=2,3,4,5,7 and n=5 (1) 10, 15, 20, 30, 50.

While a selection procedure R is required to
satisfy the P*.condition (1.2), it is desirable for a
procedure R to select a subset of small size. To
compare the efficiencies of the selection proce-
dures, we use the definition of the relative effi-
ciency suggested by Song and Oh (1981). The
relative efficiency of a procedure R* relative to
a procedure R is defined by

E(SIR} P{CSIR*}, ¢
E{STR*)" P{CS|R)

where E{S|R} denotes the expected number of
populations to be selected by the procedure K.
Note that EFF (R*, R) >
than R.

While the selection procedures g,, Ry and
R, were designed only for Weibull populations,
Patel (1976) has proposed the following selection
procedure R for populations with increasing
failure rate;

EFF(R* R) =

1 implies R* better

R :  Select 7;if and only if

Z Xi; < ¢ min Z, X 2.9

Iisk 5 =1

where the constant c=¢ (1, k, P*) can be found in
Gupta and Sobel (1962).



To compare the procedures R,, Ry and R,
we chose the procedure R as a standard procedure
and a Monte Carlo study was performed.

To investigate the performance of the pro-
cedures, we considered the following cases;

(@) =1, gp=p=-+=g=2ande=1,2,3
(bY Bi=1, B/ Br= B/ B == Be/Bo = 2

and «a=1,2,3
The relevant constants in our simulation study are
n=10, £=3,5 and P*<0.90, 0.95, and 500 simula-
tions were carried out for each case of (n, k, P¥).
The results are given in Table A.

Table A. Empirical relative efficiencies:

EFF (R* R)
@ p=1, p=p= = g2
k=3 P*=090 k=3P*=0095

al R, Ry Ry R, Ry Ry
1]1.392 1.435 1.431 ] 1.366 1.450 1.437
212023 2023 2019 2.358 2.389 2.389
312144 2144 2144 2752 2752 2.752

k=5P*=090 k=5pP*=095
a| R, R, Ry R, R Rv
112456 2474 2473 2.336 2464 2.448
213961 3976 3.976| 4.465 4.518 4.518
314360 4.360 4.360 | 4.888 4.888 4.888

®) Br =1, Be/Br = Bs/ B == Ba/Ba = 2

k=3pP*=090 k=3,P*=095
o R, R, Ry R, R, Ry
111.24) 1.267 1.267 | 1.295 1.332 1.326
211.525 1.525 1.522] 1.711 1734 1.734
311.560 1.560 1.560) 1.890 1.890 1.890

k=5pP*=0.90 k=5P*=0.95
ol R, R, Ry Ry R; Ry
1(1.554 1.554 1.551 | 1.689 1.719 1710
211741 1.744 1.744 | 1.964 1.980 1.980
311844 1.844 1844 | 1978 1978 1978

The results in Table A show the followings;

(1) In all cases studied, the procedures r,, R,
and R, perform better than the procedure R
as expected from the fact that the procedure
R is designed for a wider class of populations.

(2) In most cases, the procedure R, performs
better than Ry, and the procedure R, per-
form better than R,

(3) As the shape parameter & increases, the
relative efficiencies increase.

(4) The relative efficiencies at the conﬁguratibn
B, =1,8, =...=p, =2 are greater the those

at the configuration

Bi=1, 8/ B =r-"== By /s 2

As by-products of our simulation study, we
obtained the probability of CS and the expected
subset size, which are not reported here but availa.
ble upon request. Throughout the cases studied,
the probability of CSis well controlled for all the
procedures considered. The reasons for the above
observations were mostly due to the expected
subset sizes of the procedures considered.

Eventhough our comparison study is not
exhaustive, it indicates that the selection proce-
dure R, performs the best, and that it performs
better as the populations become more different
than the exponential populations. However, it
should be reported that the method of the
averaging MLE needed the smallest computing
time to find the MLE of a among the three
methods considered.

3. THE CASE OF A COMMON KNOWN
SHAPE PARAMETER

Suppose that the common shape parameter
a in (1.1) is known, for example, by the know-
ledge of the past data. Then, the selection pro-
blem in this case can actually be reduced to the
selection problem of the exponential populations
with scale parameters 8¢ ..., B:.

In this case, based on the % independent ran-
dom samples X, ..., X,, (i=l, ..., k) of size n
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taken from 7, the MLE of § is given by

Bo=(L X/ mve (3.0
=1
fori=1,., k.
The selection procedure we propose is defined
by
Ry : Selectx; if and only if
Bio a min B, (3.2)

tessk
where d=d (n, k, P*, o) > 1 is to be chosen to
satisfy the P*-condition (1.2).

Since the MLE B 4:( Xi1,;Xin) has the scale
equivariant property, the infimum of the proba-
bility of CS for the procedure R, occurs when
8 8, = 1. Furthermore, when 87" 8~1
2 Vlé‘i" (i=1--k)are k indepednet chi-square
random variables x ; with 27 degree of freedom.

It follows that the constant d = dn, k ,P* o)
can be chosen subject to

1T e T

P*= P{x.* < 2nd" min x;*})
25 < kb
. . 1
SR min xt /e g G

Hence the constant d=d (n, k, P*, &) is determined
by :

d= (2ny) '\ (3.4)

where y=y (n, k, P*) is the upper 100P* percen-
tage point of the distribution of min 2% /2% . The
k

2<j<
values of ¥=y (n, #, P*) have been tabulated by
Gupta and Sobel (1962).
As a final remark, it should be pointed out
that

S‘lglp E{SIRu} = kP* (3.5)

. n
since  2mnpB% == 2, X35 hasthe monotone likeli-
i=1

hood ratio property in 87 Thus it follows from
the general result of Berger (1979) that the pro-
cedure R, has a minimax property.

’

(10)

(11)

(12)

(13)
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Table I-1: Constants d such that

inf P(CS|R,)=P*

(a)P* =0.90
a 2 3 4 5 7
51|1.2468 0.6616 0.4094 03195 0.1184
61{1.1132 0.5733 04610 0.3060 0.1711
7 | 0.8634 0.5087 0.3475 0.2599 0.1710
8 | 0.8426 0.4873 0.3094 0.2118 0.1215
9 {07530 0.4195 0.2868 0.1832 0.0812
10 | 0.7186 0.3940 0.0622 0.1881 0.1006
15 | 0.4959 0.2875 0.1881 0.1405 0.0720
20 | 0.4387 0.2633 0.1732 0.1410 0.0675
30 | 0.3578 0.2076 0.1466 (.1020 0.0541
50 | 0.2461 0.1660 0.1082 0.0741 0.0398
(b)P* = 0.95
\& 2 3 4 s 7
5117695 1.0098 0.6665 0.5573 0.3780
6| 14772 0.8874 0.6785 0.5642 0.3537
7 11.2592 08066 0.6399 0.4444 0.3332
8 |1.0831 0.6955 0.4401 0.3728 0.2821
9109514 0.6047 0.4515 0.3862 0.2513
10 | 0.9425 0.5820 0.4029 0.3523 0.2612
15 1 0.6320 0.3926 0.3230 0.2315 0.1605
20 | 0.6015 0.3855 0.2644 0.2045 0.1556
30 | 0.4589 0.3069 0.2238 0.1736 0.1356
50 | 0.3150  0.2250 0.1673 0.1296 0.0957
(p*=0.99
nk 2 3 4 5 7
530699 17163 12370 08631 0.7000
6 |2.3767 16258 12048 09890 0.8037
7 119458 1.3339 1.0304 0.8806 0.8330
B [ 1.71%7 09735 0.7366 0.7076 0.4688
9 11.3789 09571 0.7884 0.7077 0.5520
10 | 1.4021 09357 0.7277 0.6541 0.4915
15 | 0.8541 0.5516 0.5139 0.4014 0.3529
20 | 0.8599 0.6001 (.4663 0.4129 0.3228
30 | 0.6562 0.4635 0.3618 0.3290 0.2557
50 ‘ 0.5226 0.3576 0.2907 0.2453 0.2176
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Table I-2: Constants d such that

inf P(CS|Ry)=P*
(a)P* =0.9C
nk 2 3 4 5 7
5 10.2563 0.2316 0.1923 0.1508 0.0834
6 10.2417 0.1938 0.1408 0.1207 0.0744
7 10.2073 0.1450 0.1074 0.0718 0.0240
8 10.2029 0.1597 0.1215 0.0897 0.0341
9 10.1894 0.1241 0.0904 0.0637 0.0213
10 [0.1952 0.1555 0.1215 0.0831 0.0535
15 |0.1471 0.1144 0.0829 0.0608 0.0288
20 |0.1329 0.0858 0.0635 0.0504 0.0258
30 {0.1072 0.0752 0.0541 0.0403 0.0179
50 (0.0819 0.0536 0.0348 0.0233 0.0115
(b)P* =0.95
k 2 3 4 5 7
n —
5 10.2961 0.3076 0.2890 0.2668 0.2095
6 10.2813 0.2869 0.2420 0.1961 0.1655
7 10.2412 0.2050 0.1698 0.1430 0.1029
B |0.2567 0.2338 0.1837 0.1622 0.0963
9 10.2338 0.2029 0.1439 0.1257 0.0820
10 10.2366 0.2208 0.1858 0.1504 0.1405
15 |0.1954 0.1522 0.1227 0.1060 0.0800
20 [0.1587 0.1258 0.1037 0.0835 0.0611
30 10.1350 0.1115 0.0848 0.0741 0.0511
50 [0.1092 0.0790 0.0577 0.0472 0.0302
(©P*=0.99
k 2 3 4 5 7
n pE—
5 10.3389 0.4136 0.4251 04474 0.412%
6 |0.3346 0.4000 0.4058 04502 0.3927
7 (0.3103 0.3314 0.3100 0.3227 0.2399
8 |0.3075 0.3568 0.3200 0.3257 0.2447
9 [0.2877 0.3002 0.2841 0.2437 0.204¢
10 (0.3083 0.3131 0.3065 0.3064 0.332%
15 10.2537 02247 0.1992 0.1865 0.200%
20 102103 0.1941 0.1827 0.1680 0.1532
30 {0.1755 0.1767 0.1542 0.1533 0.1285
50 |0.1423 0.1214 0.1039 0.0967

0.0779J




Table I-3: Constants d such that

inf P(CSIR,)=P*

(a)P* = 0.90
”k 2 3 4 5 7
5108424 0.4865 0.3252° 0.2361 0.0950
607696 0.4276 0.2726 0.1761 0.0656
710.6600 0.3827 0.2667 0.1664 0.0928
8 (0.6975 0.4272 0.2594 0.1914 0.1066
9 ]0.6051 0.2900 0.2123 0.1570 0.0721
10 | 0.5928 0.3392 0.2295 0.1468 0.0709
15 [ 0.472C6 0.2715 0.1983 0.1301 0.0486
20 ] 0.4098 0.2338 0.1561 0.1298 0.0626
30 1 0.3452  0.1822 0.1402 0.0994 0.0406
50 [ 0.2342 0.1565 0.0912 0.0638 0.0290
(bP* =095
k 2 3 4 5 7
n
5| 1.1870 0.6709 0.4727 0.4020 0.2785
609280 0.6544 0.4473 0.3604 0.2320
7 | 0.8637 0.5967 0.4386 0.2906 0.2307
8 1 08776 0.5716 0.4109 0.3300 0.2315
9 107625 0.4677 0.3150 0.2600 0.2003
10 | 0.7761 0.4900 0.3394 0.2844 0.2144
15 | 0.6102 0.4011 0.3105 0.2518 0.1456
20 | 0.5287 0.3432  0.2379 0.1954 0.1480
30 | 0.4348 0.2922 0.2155 0.1924 0.1242
50 {0.2913 0.2150 0.1550 0.1229 0.0931
(o P*=0.99
k 2 3 4 S 7
n
5117290 1.0815 0.8135 0.6876 0.5002
6 11.3997 1.0558 0.8440 0.6611 0.5601
7112744 09286 0.7147 0.6165 0.5341
8 [1.4370 0.8493 0.6685 0.5351 0.4402
9111916 0.7679 05762 0.4487 0.3610
10 | 1.1927 0.7839 0.6404 0.5938 0.4529
15 [0.8669 0.6348 0.5059 0.4266 0.3224
20 }0.7711  0.5300 0.4229 0.3631 0.2907
30 [ 0.6513 0.4361 0.3306 0.3218 0.2679
50 [ 0.4631 0.3282 0.2769 0.2436 0.2116
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