건 조 란

유 익 종
농어촌개발공사 식품연구소 축산식품연구실 연구원

발효완료 시점을 포착하는 것은 매우 중요하다. 자연 발효의 경우 발효가 다 되기 전에 건조시키면 건조가 어렵게 되며, 발효완료 시기를 지나서도 발효가 계속될 때는 건조 후에도 계속 이취가 난다.

1. 머릿말
건조란이란 달걀을 오래 저장하기 위해서 혹은 부피를 줄여 운반 또는 사용하기 위해서 빼치기도록 하기 위해서 수분을 달걀로부터 제거하여서 생산될 수 있다. 그러나 국내에서는 아직 건조산 산업현황이 없으며 이와 생산에 필요한 기술 또한 축적되어 있지 않은 상태이다. 따라서 여기서는 건조산의 생산에 가장 중요한 공정인 제당(desugarization)에 관한 몇 가지 기술로 다녀 한다.

액상으로부터 건조과정을 거쳐 제조된 건조산은 저장중 용해도의 감소, 색깔 및 동미의 악백등 여러가지 품질저하 현상이 일어나게 된다. 이 방법을 위해서 중국에서는 1900년대 초부터 그들 나름대로의 방법으로 비교적 우수한 저장성을 가진 건조산을 생산하고 있었다.

이 건조산은 미국을 비롯한 구미기관에 수출되고 있었으나 1930년대 초 중국 과민의 결과 미국 국내의 낮은 달걀가격과 높은 수입세로 인하여 수출이 감소하게 되었다.

그러나 미국은 중국산품에 대한 높은 의존도와 중국인들의 가공기법의 선택에 의한 비밀유지를 인하여 미국의 식품가공업자들은 이에 대한 기술적 저지를 경계하고 있었다. 그러나 일부 과학자들과 건조산 생산업자들의 곤밀한 노력으로 중국산 건조산이 건조 전 발효공정을 거친다는 것을 알게 되었으며 당시 이 발효공정은 단순히 분말의 포집성과 용해성을 개선하고 건조물을 용이하게 하기 위하여 농후난력을 알게 하는데 필요한 것이라고 믿고 있었다.

따라서 자연발효에 의한 건조산을 생산할 경우, 몇몇 생산업체는 발효공정에 실패하여 품질이 좋지 못한 건조산을 생산하기는 일쑤었다. 그렇다고 이 업체가 발효공정 없이 생산한 건조산이 저장성가 좋을 리가 없었다. 그 후 세계 제2차대전은 군용 건조산의 급격한 수요를 창조했으며, 이에 따라 건조산의 생산과 관련된 광범위한 연구가 실시되었다. 이러한 많은 연구결과 건조산의 저장안전성에 담이 관련된다는 것이 밝혀지게 되었다.

2. 단의 작용
달걀이 함유하고 있는 단은 다른 달걀조성분과 상호작용에 의해 변화를 일으키거나 또는 이
취를 생성하게 된다.
즉 "포도당과 단백질의 반응" 및 "포도당과 세파린(cephalin)의 반응"이다.

1) 포도당과 단백질의 반응
아미노산과 당의 반응은 1912년 Maillard 에 의해 최초로 밝혀졌으며, 이 반응의 명칭도 그 의 이름을 따 Maillard 반응이라 부른다.
이 반응의 기작은 당의 glucosidic hydroxyl group 과 peptide의 protein의 amino group 사이의 반응으로 간색화 현상이 다른 변화들과 함께 우선적으로 나타나며 여기서 생성되는 최종 물질에 전반적인 공정이 간색화 반응(browning reaction)이라고도 불리온다. 따라서 진조난 백 제조시 난백의 발효는 달걀수에 존재하는 포도당을 산으로 변화시켜 진조난백의 저장 중 용해도와 색액에 안정성을 부여하게 된다.

2) 포도당과 세파린의 반응
진조난백의 변색을 좌우하는 것이 포도당과 단백질과의 반응에 의해서라면 진조전란의 변색과 품질에에에 세배한 영향을 미치는 것은 포도당과 세파린(cephalin)의 반응이라 할 수 있 다.
불변화된 진조전란으로부터 분리된 물질은 분 석한 결과 phospholipid(특히 cephalin)의 유도 체라는 것이 밝혀졌으며 cephalin amino group 과 aldehyde 간의 반응에 의한 산물이라는 것을 그 후에 확인하였다. 이 물질은 기초도의 감소를 야기시키는 원인이 달걀의 저장성에서 도 있다 는 것을 나타내 주는 것이며, 이 물질을 측정 하므로써 기초도의 감소수준을 표시할 수도 있 었다.
즉 달걀의 포도당은 이러한 물질을 생성하 는 cephalin amine-aldehyde 반응에서에서 반 응성 aldehyde로 작용한 것이다. 그러나 진조 난의 인지질분에서 일어나는 품질변화는 진 조하기 전에 액성류로부터 포도당을 제거함 으로써 근본적으로 없앨 수 있다.
한편 진조전란의 저장중 이취(異臭)의 생성 은 "포도당과 세파린의 반응"(glucose-cepha-
ogense 또는 Escherichia freundii 인 것으로 밝혀졌다. 그러나, Proteus, Serratia 또는 Pseudomonas 등의 단백분해 미생물에 의한 발효는 열동한 품질의 납백을 생산하게 된다.

자연발효에 의한 건조한 생산시 문제점으로 제기되는 것은 Salmonella와 같은 병원성 세균의 존재다. 발효공정중 이와같은 미생물이 있을 경우 발효 후의 건조공정만으로는 치명적인 치사효과가 없기 때문이다.

2) 인위적 미생물발효

미국에서는 1931년 액상단백을 "Lactic acid bacillus"와 같은 산생성미생물의 접종 후 발효로서 우수한 품질의 건조납백을 생산할 수 있다는 특허를 통해 발표되었다. 여기서 주목하는 장점들로서는 첫째, 60시간 이상의 발효소요시간을 24시간 이하로 감소시키며 둘째, 더욱 균일한 분말을 생산하고 셋째, 병원균으로부터의 위험성을 감소하며 넷째, 부패의 발생가능성을 줄이겠다는 등의 내용이다. 그 후 Streptococcus와 Lactobacillus균이 전반적으로 담을 제거하는데 사용되었으며 24시간 내에 전란으로부터는 모든 담이 제거되었으나 납백의 경우에는 전부 제거되지 않았다.

따라서 Streptococcus lactis는 다양성이 사용되거나 효모추출물이 접종 전에 생장촉진제로 세포에 첨가되어야 성공적으로 납백으로부터 담을 제거할 수 있다는 것을 알시하는 것이다. 통상 Streptococcus lactis는 제품의 약 1%에 해당하는 양이 제작을 위해서 사용되며, 담합량은 0.32%에서 37°C에서 1.5시간내에 0.006%로 감소된다.

Streptococci는 납백 ml당 5×10^9 cells을 사용함으로써 짧은 시간내에 발효를 완료하고 그 함량성분의 증식을 막을 수 있다. 최근에는 Streptococcus diacetilactis을 사용함으로써 전란을 제거시키는 동시에 품미와 향미를 부여하기 위한 연구가 이루어졌다.

주 발효과정 중 미생물의 최대성장과 항미 성분인 diacetyl의 생산을 위해서 전란을 65°C에서 20분간 가열하고 수소이온농도를 구형하여 5.5로 맞추므로써 우수한 품질의 건조납백을 생산할 수 있다고 한다.

3) 효모발효

달걀에서 포도당을 제거하기 위한 순수한 효모배양액의 사용은 1940년대 중반에 처음 소개되었다. 즉 납백과 전란을 Saccharomyces a-
piculatus로 채달하였으며, 난백의 당함량은 37℃에서 3시간 약온시간 후 0.5%에서 0.05%로 감소되었다.

그러나 억성난백에 테가된 효모의 높은 함량 (1%)으로 억기효모효과를 유발한 건조난백이 생산되었다. 그 후 비교적 적은 양 (0.1%)의 Saccharomyces cerevisiae가 난백의 당을 제거하는데 사용되었으며 생성된 산의 양은 난백 단백질인 mucin을 침전시키는 약을 정도였다. 또한 효모발효된 전란의 음미를 개선하기 위하여서는 원심분리서를 효모세포를 제거함으로써 효모취를 없애할 수 있게 되었다.

일반적으로 Saccharomyces 균종이 Torulopsis 균종보다 우수한 음미의 건조전란을 생산하며 발효효율을 높이기 위하여 전란혼합물의 PH 6.0 이하 발효조작부에서도 30℃의 조건을 유지하여야 한다. 효모발효는 전란으로부터 당을 제거하는 일반적인 수단으로 많이 이용되고 있으며 가장 주의할 점은 저장중에 가끔 나타나는 곰팡이에 대한 대책이다.

효모발효의 장점은 다음과 같다.

첫째, 산도의 변화가 거의 없이 중화의 필요성이 없으며, 농경에 소요되는 배양시간이 짧고 세척, 수분방해효과를 미리 편리한 형태로 사용이 가능하며, 발효한 벤자리나 풍미의 생성을 억제하고 불필요한 부산물 생성하지 않는다.

4. 효소발효

포도당 산화효소는 1928년 Muller에 의해서 Aspergillus niger와 Penicillium glaucum의 배양액에서 분리되었다. 그는 산소의 존재 하에서 당이 gluconic acid로 산화되는데 효소가 작용할 것을 보였으며, 그 후 과산화수소가 이러한 효소작용의 신발이라는 것을 알아내게 됨으로써 발효과정을 설명할 수 있게 되었다.

또한 발효성분원질을 사용하므로써 이러한 발효에서 생성된 산소분자와 산소분자로부터 유도된 것이라는 것을 알게 되었다. 그러하여 효소는 포도당에서 산소에수소를 이전시키는 작용을 하며 실질적인 효소체계는 glucose oxidase와 catalase로 구성된다.

즉 glucose oxidase는 포도당을 산소와 물의 존재하에서 gluconic acid와 과산화수소를 생성하게 하며, catalase는 생성된 과산화수소를 다시 물과 산소로 분리시키는 역할을 한다고 볼 수 있었다.

1953년에는 난백으로부터 당을 제거하기 위하여 당산화효소체의 산업적인 사용이 시도되었으며, 효소처리된 난백이 약취가 뚜렷한 풍미를 생성하지 않고 풍질한 염월스케이크를 생산하는데 사용될 수 있었다. 그 후 난백을 더욱 효율적으로 제거하기 위하여 포도당함량, 시간, 효소량과 과산화수소요구량 등을 고려하면서 효소적 제거방법이 계속 연구되고 있다.

4. 난가공산업에서의 당제거 실험

난가공산업에서의 당제거에 관한 실험기술은 기업의 비밀로 유지되기 때문에 기술하기 어려우나 제거에 관련된 일반적인 절차나 방식에 관해서는 여러가지 문헌에 간략하게 나와 있으므로 이를 종합하여 소개하려 한다.

1) 난 백

난으로부터 당의 제거는 대부분 천진한 관리하에 수행되는 세균발효공정을 사용하고 있다. 물론 포도당 산화효소법 및 효모법이 병용되기도 하다. 세균발효법이 기능적으로나 경제적으로 유리하기 때문에 이 방법을 채택하고 있는 것으로 보인다. 그러나 난황이 일부 혼입이 될 경우에는 세균발효법에 의한 경우 이 위 및 불쾌한 풍미를 생성하게 되므로 주의해야 한다.

그러고 각 업계마다 세균배양액의 관리방식이 특특하며, 특수한 미생물을 선발하여 보존하는 경우도 있다. 또한 세균배양액을 적당량의 난백에 미리 배양시켜 이들을 다시 주발효소에 혼입시키므로써 발효공정을 효율적으로 행하기도 한다.

난백을 발효시키기 위해서는 먼저 균질화시
건 후 산균공정을 거쳐 식용 구연산이나 유산으로 PH 7.0~7.5로 맞춘 다음 외부균, yeast, mold 등에 의해 난액의 오염을 철저히 방지하여 그 후 적절한 세균배양액으로 접종하여 30~33℃로 유지한다. 발효는 세균의 배양액이 착성한 때 담이 모두 소모되며 이로 인해 중지된다.
발효에 사용될 세균배양액은 향상 햄팅상태에서 보관하여야 군의 활력이 그대로 보존된다. 이러한 단계적인 접종준비나 순서는 훼손한 제품을 만드는데 필수적인 것이다.
2) 전란 및 난황
 전란과 난황함유날제품의 당제거에는 산화촉매효소제제가 거의 대부분 이용되고 있다. 이 공정은 30~33℃ 또는 10℃의 저온에서도 이루어지며 저온에서는 특히 긴 발효시간을 요구한다. 효소발효법은 전란 혹은 난황의 양이 많고 작품에 따라 관리하게 조절이 가능하며 난액할 유량인 경우에는 PH를 6.0으로 조정하고 난황의 경우에는 이를 고려할 필요가 없다. 점가되는 효소의 양은 바라는 반응물, 발효의 순도, 구입한 효소의 활력 및 재량량에 따라 결정되며 공정에 필요한 효소의 양을 일률적으로 규정짓는다는 것은 불가능한 일이다. 따라서 기마의 다른 조건들을 일정하게 조절할 때만이 그 임가량이 결정될 수 있다.

에고마틱(美) 계란선별기는
정확하고 효율적인 선별을 보증합니다.

6상자(2,160개)/시간
12상자(4,320개)/시간

루트로웰(美) 분무기보다 더 좋은 것은 아직 없습니다.
○6ℓ 용량의 큰 약통
○95% 이상을 50미크론 이하의 미립자로 30m까지 원거리 분무