ON THE CONVERGENCE OF DISCRETE TIME SUBMARTINGALES

HI-CHUN EUN

This thesis is concerned with the convergence of discrete time submartingales which are not L^1 -bounded.

The following example is our main results in this paper. The martingale X in the example is L^1 -bounded but it is not uniformly integrable. The martingale Y=T(X) in the example is not L^1 -bounded but it converges a.s. to a finite r.v. $Y_r=T_\infty(X)$ but $Y^*=T^*(X)<\infty$ a.s. and $S(Y)<\infty$ a.s.

Example 1. Let Q = [0, 1], \mathcal{F} the σ -field of the Lebesque measurable subsets of [0, 1] and P the Lebesque measure on \mathcal{F} . Define for $n \ge 1$,

$$\begin{split} & X_n = 2^n I \left[\frac{2^n - 1}{2^n}, 1 \right], \\ & \mathcal{F}_n = \sigma[X_1, X_2, \cdots, X_n] \\ & = \sigma \left[\left[0, \frac{1}{2} \right), \left[\frac{2^n - 1}{2^n}, 1 \right], \left[\frac{2^k - 1}{2^k}, \frac{2^{k+1} - 1}{2^{k+1}} \right) \text{ for } 1 \leqslant k \leqslant n - 1 \right] \end{split}$$

then $X = (X_n, \mathcal{F}_n, n \geqslant 1)$ is a martingale.

Let $\mathcal{F}_0 = \mathcal{F}_1$, $\nu_1 = X_1$ and $\nu_n = X_{n-1}$ $(n \ge 2)$. Then $\nu = (\nu_n, \mathcal{F}_n, n \ge 1)$ is a predictable process and the Burkholder transform of X by ν , Y = T(X) is defined by

$$T_n(X) = \sum_{k=2}^{n} X_{k-1}(X_k - X_{k-1}) + X_1^2(n \geqslant 2),$$

$$T_1(X) = v_1 X_1 = X_1^2.$$

Since

$$X_{n-1}(X_n - X_{n-1}) = 2^{2(n-1)}I\left[\frac{2^n - 1}{2^n}, 1\right] - 2^{2(n-1)}I\left[\frac{2^{n-1} - 1}{2^{n-1}}, \frac{2^n - 1}{2^n}\right)$$

for $n \ge 2$, we obtain that for $n \ge 2$.

$$T_n(X) = T_{n-1}(X) + 2^{2(n-1)}I\left[\frac{2^n-1}{2^n}, 1\right] - 2^{2(n-1)}I\left[\frac{2^{n-1}-1}{2^{n-1}}, \frac{2^n-1}{2^n}\right).$$

Thus we obtain

$$\begin{split} T_1(X) &= 2^2 I \left[\begin{array}{c} 1 \\ 2 \end{array}, \ 1 \right], \\ T_2(X) &= (2^2 + 2^2) I \left[\begin{array}{c} 2^2 - 1 \\ 2^2 \end{array}, \ 1 \right], \end{split}$$

Received 29 December 1983. Thesis submitted to Korea University, December 1981. Degree approved February 1982. Supervisor: Professor Yu, Ili-Sé.

$$T_n(X) = \left(\frac{2^{2n} + 2^3}{3}\right) I\left[\frac{2^n - 1}{2^n}, 1\right] - \sum_{k=2}^{n-1} \left(\frac{2^{2k+1} - 2^3}{3}\right) I\left[\frac{2^k - 1}{2^k}, \frac{2^{k+1} - 1}{2^{k+1}}\right).$$

$$\Rightarrow 3 \text{ Since } v = (v_m, \mathcal{F}_m, n > 1) \text{ is a predictable process in } L^{\infty}, Y = T(X) = 1$$

for $n \ge 3$. Since $v = (v_n, \mathcal{F}_n, n \ge 1)$ is a predictable process in L^{∞} , $Y = T(X) = (T_n(X), \mathcal{F}_n, n \ge 1)$ is also a martingale.

This example also suggests us the following theorems which are some generalized results in [1], [2], [3], [4] and [5].

THEOREM 1. Let X be an L¹-bounded submartingale and v^* finite a.s. Then there does not exist a positive constant M which is independent on X and on the probability space such that for every c>0,

$$cP\{T^*(X)>c\} \leq M||X||_1.$$

THEOREM 2. Under the same conditions in Theorem 1, there is no constant M_X depending on X such that for every c>0,

$$cP\{T^*(X)>c\} \leq M_X ||X||_1.$$

THEOREM 3. Let X be an L¹-bounded submartingale and $\nu^* \in L^\infty$. Then there is a constant M_X depending on X such that for every c > 0,

$$cP\{T^*(X)>c\} \leq M_X||X||_1.$$

THEOREM 4. Let $(X_n, n \in \mathbb{N})$ be an L^1 -bounded submartingale. Then for any stopping time T, X_T is integrable.

THEOREM 5. Let $(X_n, n \in \mathbb{N})$ be an L¹-bounded nonnegative increasing submartingale. Then the transform $(T_n(X), n \in \mathbb{N})$ converges a.s. on $\{v^* \leq \infty\}$.

THEOREM 6. Let $(X_n, n \in N)$ be an L^1 -bounded submartingale. Then the transform $(T_n(X), n \in N)$ converges a.s. on $\{v^* < \infty\}$.

THEOREM 7. Let $(X_n, \mathcal{F}_n, n \in \mathbb{N})$ be an L^1 -bounded submartingale. Then its squre function $S(X) = \lim_{n \to \infty} (\sum_{i=1}^{n} x_k^2)^{\frac{1}{2}}$ is finite a.s.

THEOREM 8. If X is an L^1 -bounded submartingale, then there is a constant M_X depending on X such that, for every c>0,

$$cP\{S(X)>c\}\leqslant M_X||X||_1.$$

THEOREM 9. Let $X = (X_n, \exists_n, n \in N)$ be an L^1 -bounded submartingale and $Y = (Y_n, \exists_n, n \in N)$ a martingale. If $S_n(Y) \leq S_n(X)$, $n \in N$, then Y converges a.s.

THEOREM 10. Let Y be a process. If there is an L¹-bounded submartingale X such that the transform of X, Y = T(X) by a predictable process v with $v^* < \infty$ a.s., then S(Y) is finite a.s.

References

1. D.G. Austin, A sample function property of martingales. Ann. Math. Stat.

37 (1966), 1396-7.

- 2. D. L. Burkholder, Martingale transforms. Ann. Math. Stat. 37 (1966), 1494-1504.
- 3. D. L. Burkholder, Distribution function inequalities for martingales, Ann. Proba. 1 (1973), 19-42.
- 4. P. A. Meyer, Martingales and stochastic integrals I, Lecture Notes in Math. 284, Springer, (1972).
- 5. J. Neveu, Martingales à temps discrêt, Masson, Paris, (1972).

Korea University at Jochiwon Chungnam 320, Korea