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REMARKS ON FIXED POINT THEOREMS OF
DOWNING AND KIRK FOR SET-VALUED
MAPPINGS IN METRIC AND BANACH SPACES

SEHIE PARK

1. Introduction

In [2], D. Downing and W. A. Kirk obtained a number of fixed point
theorems for set-valued maps in metric and Banach spaces. The authors considered
maps which are more general than the contractions with nonempty and closed
mapping values, and obtain results for maps satisfying certain “inwardness”
conditions. A key aspect of their approach is the application of a general fixed
point theorem due to Caristi [1].

On the other hand, in [6], the present author obtained a number of equivalent
formulations of the well-known result of I. Ekeland [3,4] on the variational
principle for approximate solutions of minimization problems. Some of such
formulations include sharpened forms of the Caristi theorem. In this paper, using
one of such formulations, we show that Theorems 1-3 and Corollaries 1-5 of
[2] are substantially improved by giving geometric estimations of fixed points.

The key to our approach is the applications of the following.

THEOREM 0 [6]. Let V be a metric space, C a nonempty complete subset of V,
#&C, 620 and A>0. Suppose there exists a l.s.c. function F:C— R U
{-+o0}, % + oo, bounded from below such that F(u) < infc F + .

If T:C—2V is a set-valued map satisfying the condition:

Vee Bu,) NC/Tx dyeC/ {z) such that

F(y) < F(x) —edld(z,y),
then T has a fized point v & B(u,A) N C such that F(v) < Flu).

In Theorem 0, 2V denotes the class of all nonempty subsets of V, and B the
closed ball. Note that v is a fixed point of T iff v e Tw.

We follow terminologies and notations in [2].

For historical remarks, see [2].
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2. Basic results

Let X be a Banach space, K< X, and I': K— F(X) where F(X) denotes

the class of nonempty closed subsets of X. Given z € K and a > 1, we let
) ={z&lz: |lz—=z2<ad(z,I'z)}
where d(z, I'z) =inf{llx —4ll: u € I'z}. For z €K, the inward set of z
relative to K is the set
I(x) = {Q-a)z+ay: yeK, a>0}.

THEOREM 1. Let K be a nonempty closed convex subset of a Banach space X,
and ' : K— F(X) an u.s.c. map which satisfies for given k€ (0,1) :

(a) Vze K Elél= 8(x) >0 such that

yEB(#,0) NK = d(y I'y) <d(y, I'z) + kllz — sl

If either

M) I'i(z) N Ig(x) # ¢ for each x € K, or

W) VzeK da=alz) >1 du=ul@) € (0, 1) such that

(A —wa+ pl(z) CK,

then there exists an 71 € (0,1) such that for any u e K and 1> 0 satisfying
d(u,Tu) < Ay, I' has a fixed point in B(u,2) N K.

Proof. (b) As in the proof of [2, Theorem 1(b)], for any z € K such that
d(z,I'z) >0, there exists a y € K/ {z} such that

Pllz — yll < d(z, Fx) — d(y, I'y),

where 7 is so chosen that 7= — [k — (1 —¢)(1 + &)71] for any ¢ >0 so that &
< (-8 +e L Let F(z) =%7'd(z,I'z). Then F is l.s.c. since I is u.s.
¢. Therefore by Theorem 0, for any # & K and 12> 0 satisfying F(x) < infgF
+ A, I has a fixed point v & B(x,2) N K. Since infx F=0, # can be so
chosen that d(u, "u) < 7.

(') As in the proof of [2, Theorem 1(b')], for any z€ K such that
d(z,I'z) >0, there exists a y € K,/ {z} such that

pllz — | < dx, T'z) —d(y, I'y)

where 7 =1 — ¥ for some # € (k,1). Therefore, the same argument to the
proof (b) leads the conclusion. This completes our proof.

Let F;(X) denote the class of nonempty bounded closed subsets of a metric
space (X,d) with the Hausdorff metric H. Amap I': K—F(X), KCX, is
called a contraction if there exists a constant k2 € (0,1) such that

H('z, I'y) <kd(z,y), z,yE K.

If the map I" in Theorem 1 is a contraction from K into Fy(X), then I is

u.s.c. and satisfies the condition (a), for
d(y, T'y) <d(y, ') + HUI'z, I'y), z,y€K
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In this case, using an argument of T. E. Williamson, Jr. [7], we have more
stronger conclusion.

COROLLARY 1. With K and X as in Theorem 1, suppose I' : K— Fp(X) is a
contraction which satisfies either condition (b) or (b'). Then there exists an 9 €
(0,1) such that for any u € K and 3> 0 satisfyving d(u, T'u) < Ay, either u is
a fired point of I’ or I' has a fixed point v in B(u,2) N K/B(u,s) where
s=d@, M's) Q+kL

Proof. Note that s <4, for € (0,1) and
_ d(u, Tu)

itk = ll—?k <A
Now it suffices to show that if # is not fixed under 7', then 7" has no fixed point
in B(u,s). For any y € B(u,s) N K, we have
du, Mu) < d{u, y) + d(y, I'u)
s+ d(y, I'n),

that is,
EQ 4+ B, T'n) <d(y, Tu).
Hence,
d(y, I'u) > ks > kd(y, u).
Suppose y € I'y. Then we have
H(Ty, I'u) > kd(y,u),

a contradiction. This completes our proof.

Let K(X) and H(X) be the class of nonempty compact subsets and nonempty
weakly compact subsets of X, respectively. Now, we have the following
consequence of Corollary 1.

COROLLARY 2. With K and X as in Theorem 1, suppose I' : K— Fy(X) is a
contraction for which I't C T (z), x€ K. IfI': K- KX) or if X is
reflexive and I' : K— H(X), there exists an 7 € (0,1) such that for anyu € K
and 2> 0 satisfying d(u, T'u) < 2y, either u & I'u or I' has a fixed point v in
B(u, ) N K/B(u,s) where s=du,l'u)(1+ k)7L

Recall that a map f: K— X is weakly inward [5] if fx € Jg(X) for each
z €K

COROLLARY 3. Let K and X be as in Theorem 1. Suppose amap f: K— X is
continuous, weakly inward and satisfies for given k< (0,1):
@) Vxe K d46=6(z) >0 such that
y€ Bz, ) NK = l|la—fyll < lly—sfall -+ kllz—yll.
Then there exists an 5 € (0,1) such that for any w < K and 2> 0 satisfying
d(u, fu) < Ay, f has a fived point in B(u,2) N K.



58 Sehie Park

3. Metric spaces

Let F(M) denote the class of nonempty closed subsets of a metric space (M, d).

THEOREM 2. Let M be a complete metric space and I' : M— F(M) a map such
that the map x\—d(x, ['x) is l.s.c. Suppose there exist constants o > 1 and
k<1 such that for each x € M,

jpf 4 (v, T'y) < kd(z, I'z) 0y
where I'y,(z) = [z € Tz d(z, 2) < ad(x, I't)}. Then for any uc M, n>1,
and ¢ > 0 satisfying d(u, T'u) < e(1—kyaly™Y, I has a fixed point in B(u,c).
Proof. Let x&€ M, y € I',(x). Then from (1), we have
ald(z, y) <d(z, I'z)
< A-B[d I~ inf 40, '), @
For any z € M such that z & 'z, we have
d(z, I'x) —Eirn(f‘d(y, T'y) >0.
yela(z)

Then, for any 7>1, use (2) to select y € I',(x) so that

dz, I't) <71 — B [d(z, I'x) — d(y,I'y)].
Let F(z) = ap(1—k)'d(z, I'z). Since F is l.s.c. and y # z, by Theorem 0,
for any u € M and any ¢ > 0 such that F(#) < infy F+ ¢, T has a fixed point

v & B(u, ¢). Since infyy F=10, # can be so chosen that d(u, I'u) <e(1—k)
a Y71, This completes the proof.

COROLLARY 4. Let M be a complete metric space and {f,},ea a pointwise
equicontinuous semigroup of selfmaps of M. Suppose there exist constants a >1,
k<1 such that for any x € M,

supd(z, fz) < ainfd(z, f2),
rEA r<EA
()
ir:f d(fuzx, frx) <k in£ d(z, f,r).
uEy e
Then for any e € M, v > 1, and ¢ > 0 satisfying
irelﬁd(u, ) <e(l—Ba iy,
there is a point v & B(u,€) such thar v = fv for all vy € A.
Proof. For x &€ M, let O(z) = {f,(x) : 7y € A} and define I': M—2M by

taking I't = O(z). Then as in the proof of [2, Corollary 4], z'—> d(x, I'z)
is I.s.c., Ig(z)=Iz, and

inf d(y, I'y) < kd(z, I'z).

Therefore, for any u € M, % >1, and ¢ >0 satisfying d(x, I'u) < e(1—k)a™?
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7Y, I has a fixed point v € B(u, ¢). Note that by the first inequality of (c),
v € I'v can happen only if v = f7 () for all y € A. This completes the proof.

From Corollary 4, we have the following.

COROLLARY 5. Let M be a complete metric space and f:M— M a map for
which {f}2, is pointwise equicontinuous on M. Suppose for fixed a > 1 and kb
<1, f satisfies the condition

sup d(z, fiz) < ai_glfd(x, Sfix),
inf d(fix, fiz) < /eivr>11fd(x, fix), z& M.

izt

Then for any u s M, 7> 1, and > 0 satisfying
i_nlfd(u, Siu) <e(l—-Ba iy,

(c)

f has a fixed point v < B(u, ©).

REMARK. If f: M — M is a contraction with Lipschitz constant & <1, then f
satisfies the hypothesis of Corollary 5 with a = (1—k)7%. Therefore, as in
Corollary 1, for any u € M, > 1, and ¢ >0 satisfying

inlfd(u, fiu) < ep,
i

either 4 = fu or f has a fixed point v & B(y, €)/B(u, s) where s = (1+4)"!
inf d(u, fiu). This improves the Banach contraction principle.
21

Recall that a metric space is convez iff for each two points z, y, & # v, there
exists a point 2, 2 # 2 # v, such that

d(z, 2) + d(z, y) = d(z, ).

THEOREM 3. Let M be a complete conver metric space and f: M— M
a surjection which satisfies, for fixed h > 1, the condition:

(d) Ve M de=ce(x) >0 such that

dlz,y) <e = d(fx, fy) > hd(x,y).
If f~1: M—2M s continuous with f~'r compact Jfor each x & M, then for any
u & Mand ¢ >0 satisfying d(u, fu) < 1—h"DA, f has a JSixed point v &
Bu, 2.

Proof. Define F: M— R by F(z) = d(z, f'x). Then for any r& M such
that x # fz, as in the proof of [2, Theorem 3], there exists an m € M such
that m #+ x and

d(z,m) < QA—h)[F(zx) — F(m)_.
Thus by Theorem 0, for any « & M and > 0 satisfying F(u) <infy F+ (1
—h) 2, f has a fixed point v € B(x, ) such that F(v) < F(x). In fact, since
infpr F =0, u can be so chosen that d(, S ) < 11—k
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ReMARK. Each of Theorems 1-3 and Corollaries 1-5 improves the corresponding
one in [2] in the sense that ours give the geometric estimations of whereabouts

of fixed points. Note that we have relied heavily upon basic ideas of Downing
and Kirk.
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