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GROUPOID AS A COVERING SPACE

JoNG-Sui Park AND KeoN-HEee LEE

1. Introduction

Let X be a topological space. We consider a groupoid G over X and the
quotient groupoid G/N for any normal subgroupoid N of G. The concept of
groupoid (topological groupoid) is a natural generalization of the group (topologi-
cal group). An useful example of a groupoid over X is the fundamental
groupoid 7X whose object group at z& X is the fundamental group z (X, x).

It is known [5] that if X is locally simply connected, then the topology of X
determines a topology on #X so that it becomes a topological groupoid over X,
and a covering space of the product space Xx X.

In this paper the concept of the locally simple connectivity of a topological
space X is applied to the groupoid G over X. That concept is defined as a term
‘I~connected local subgroupoid’ of G. Using this concept we topologize the groupoid
G so that it becomes a topological groupoid over X. With this topology the
connected groupoid G is a covering space of the product space XxX. Further-
more, if ob (G)=2X is a covering space of X, then the groupoid G is also a
covering space of the groupoid G.

Since the fundamental groupoid #X of X satisfying a certain condition has an
1-connected local subgroupoid, #X can always be topologized. In this case the
topology on zX is the same as that of [5].

In section 4 the results on the groupoid G are gencralized to the quotient
groupoid G/N. For any topological groupoid G over X and normal subgroupoid
N of G, the abstract quotient groupoid G/N can be given the identification
topology, but with this topology G/N need not be a topological groupoid over
X [4]. However the induced topology @(H) on G makes G/N (with the
identification topology) a topological groupoid over X.

A final section is related to the covering morphism. Let G, and G, be groupoids
over the sets X; and X,, respectively, and ¢ : G; —> G, be a covering epimor-
phism. If X, is a topological space and G, has an 1-connected local subgroupoid,
then we can topologize X, so that 0b(¢) : X; —> X, is a covering map and ¢ :
G, —> G, is a topological covering morphism.

2. Preliminaries

A groupoid G over aset X is a category in which every morphism is invertible
and 06(G)=X. For each z,y in X the set of morphisms in G from z to y is
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denoted by G(z,5). A topological groupoid G over X 'is a groupoid over the
topological space X such that all the structure functions

(1) the initial and fianl maps 89,0, : G —> X,

(2) the unit map #: X —> G, z—> 1,

(3) the composition map ¢ : GXG —>G, (a,b) —> ba, whose domain is the
set of (a,b) such that 3,(a) =8,(8),

(4) the inverse map G —> G, a—>a”
are continuous. Thus the groupoid is a natural generalization of the group, and
the topological groupoid is also a natural generalization of the topological group.
If z is an object of G, then under the composition the set G(x, z) is a group,
written G{z}, and called the object group, or vertex group, of G at z. As an
useful example of a groupoid over the topological space X, we can consider the
fundamental groupoid zX whose object group at z&X is the fundamental group
n(X, x).

A groupoid G is called connected if G(x, y) is nonempty, and called 1-connected
if G(x,v) has exactly one element, for all objects z, yof G. A topological
groupoid G is called locally trivial if each z in 0b(G) has a neighborhood U
such that there is a continuous function 4 : U —> G such that 2(») €G(x, ) for
all yeU.

Let G be a groupoid. Then HCG is said to be subgroupoid of G if H is a
subcategory of G which is also a groupoid. A subgroupoid N is called wide in
G if N has the same objects as G, and called normal if N is wide in G and
for all objects z,y of G and geG(x,y) we have

g 'N{y)g=Niz}.
In such case the quotient groupoid G/N is defined [2].

A morphism ¢ : Gy —> G of groupoids is simply a functor. For each object
r of G the star of z in G, denoted by St(G, z), is the union of the sets G(z,
) for all object ¥ of G. Thus St(G,z) consists of all elements of G with
initial point x. A morphism ¢:G-—>G of groupoids is called a covering
morphism if for each ocject & of G the restriction of ¢

St(G, &) —> St(G, ¢(2))
is bijective; specially, ¢ is called a covering epimorphism if ¢ is a surjective
covering morphism. Furthermore, we say that ¢ is a topological covering
morphism if for each obiect Z of G the restriction of ¢

St(G, ) —> St(G, ¢(2))
is a homeomorphism. (See [2] and [3]).

1

3. Groupoids

DEFINITION 3.1. Let G be a groupoid over a topological space X. HCG is
said to be an 1-connected local subgroupoid of G if each z€ X has a neighborhood
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U such that HU is an 1-connected subgroupoid of G, where HU= UEUH (z,¥).
T, ye

For z&X, denote #%(H, z) the family of neighborhoods U of x such that HU
is an 1-connected subgroupoid of G.

Every groupoid G need not have an 1-connected local subgroupoid, but has an
1~connected (local) subgroupoid if G is connected and X is finite.

THEOREM 3.2. Let G be a connected groupoid over a topological space X such
that X is finite. Then there exists an 1-connected (local) subgroupoid H of G.

Proof. If the space X consists of one element, then the theorem is clear. We
assume that the theorem is satisfied when the space X has nelements.
Suppose that X has n+1 elements, say, X= fzg, »eeeee s Tny Zpi1}. Let A={zy,
«»Za}. Then GA is a subgroupoid of G. And there exists an 1-connected (local)
subgroupoid L of GA by the assumption. Since G is connected we can choose
an element @’,.1€G(z;, ) for each i=1, 2,..., n. With these elements we
define an 1-connected (local) subgroupoid H of G as follows;

H(z;, z))=L(zi, ;) if 2% xpe1 and 2;# 24,
H(z;, zp41) = {a,"na i€ L(x;, z,)),
H(xp1, 2)={a(a,") e EL(z,, )},
H(xn+1: xn+l) = {11n+]} .
Then it is clear that H is an 1-connected (local) subgroupoid of G.

Using the 1-connected local subgroupoid H of G, we topologize the groupoid
G as follows. Given a€G, choose elements U and V of % (H,dy(a)) and %(H,
01(a)}, respectively. Let H(U,a, V) be defined by

{cablbc HU, ccHV}.
Then the set of forms of H(U,a, V) constitutes a basis for a topology on G.
This topology will be called the induced topology by H, and denoted by
O(H). Throughout this section we assume that G is a groupoid over the topolo-

gical space X with the induced topology ©(H) by an 1-connected local subgrou-
poid H of G.

THEOREM 3.3. G is a locally trivial topological groupoid over X with (topolo-
gically) discrete object groups.

Proof. First we prove that G is a topological groupoid over X. Only a proof
of the continuity of the composition map 0 : GXG —> G is sketched. The proof
of continuity of the other maps are similiar. Let 6(a, b)=ba for (a,b)eGXG,
and W be any neighborhood of &z in G. Then there exist Us#(H, 8y(a)) and
VEX(H, 6,(b)) such that H(U, b&a, V)YCW. Let Def(H,6,(a)). Then H
(U,a,D) is a neighborhood of 2 and H(D,5, V) is a neighborhood of 8.
Furthermore, #((H(U, a, D) x H(D, b Vn (G;G)CH(U, ba, V)CW. In
fact, if (r,0)€(H(U, a, D)XH(D, b, V))N(GXG), then r=caa’ and
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0 ="b'bd for ' €HU, ¥ €HV, and ¢,d=HD such that 8,(c) = 8,(d). Hence
0(r, 0) = 0y = b'bdcaa’ = b'bad’ € H(U, ba, V). Thus the composition map
@ is continuous.

Second, G is locally trivial. For z€X, choose an element U of #%(H, x).
Define a map 4: U—>G by A{(y)EH(z, y). Then 1 is a well-defined and
continuous map since H is an 1-connected local subgroupoid of G.

Finally, G{z} has the discrete topology for each z&€X. If acG{z}, then the
intersection of G{z} with a basic neighborhood of a is {«}. So G{z} has the
discrete topology.

Let £(G) be the family of all 1-connceted local subgroupoids of G. Then the

relation between the induced topologies on G by the elements of £(G) is described
as follows.

THEOREM 3.4. Let Hy, and H, be in £(G), and H,NH, in 2(G). Then
E(HI) =0(H,).

Proof. Let We0(H,) and a&€ W. Then there exist Uc# (H], d,(a)) and VE
#%(H;, 01(a)) such that Hi(U, a, V)T W. Choose two elements U’ and V' of
W (Hz, 90(a)) and %(Ha, 9:(a)), respectively, such that U'cU and V'CV.
Then Hy(U’, a, V')CH (U, a, V)C W since H,NH,€.£(G). Hence we have
W&T(H;). The converse is similiar.

COROLLARY 3.5. Let H; and Hy be in £(G), and H,CH, Then G(H;)=
T(H,).

Any groupoid G need not have an 1-connected local subgroupoid but every
fundamental groupoid #X of X satisfying a certain condition has an 1-connected
local subgroupoid.

THEOREM 3.6. Let nX be the fundamental groupoid of a topological space X.
Suppose that there is a covering U of X whose members are null homotopic open
subsets of X such that for any U, VEll, if UNV#¢, then UUYV is contained
in some null homotopic open subset of X. Then there exists an l-connected local
subgroupoid of nX.

Proof. Let H be the set of all homotopy equivalence classes of paths in
elements of %/. For each z& X there is a member U of % containing z. Let 3,2
be in U. Since there exists a path @ in U from » to z, the set H(y, 2) is
nonempty. Each element of H(y,2) is the homotopy equivalence class of some
path 8 in a member V of % containing v and z. Since UUV is contained in
some null homotopic open subset of X, S and « are homotopic. Thus the set
H(y, 2) has exactly one element, and so HU is 1-connected.

It is not hard to show that HU is a subgroupoid of zX. Consequently, H is
an 1-connected local subgroupoid of #X.

THEOREM 3.7. Let G be a connected groupoid over X. Then G is a covering
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space of the product space XX X. Morever if the cardinality of G(z,y), z,¥€
X, is n, then G is the n-fold covering space of XX X.

Proof. Define a map p: G—> XXX by the equation
p(a) = (0y(a), 0:1(a)), a<C.
Then p is a well-defined and continuous map since the initial and final maps
are continuous. It is clear that p is surjective by the connectivity of G.

For any basic neighborhood H(U, a, V) of a in G, 8,(H(U, a, V))=U and
8,((H(U,a, V))=V. Hence p(H(U,a, V))=UXYV is open in XXX. Therefore
p is and open map.

Let z, y be in X, and Ue%(H,x) and V&% (H,y). Then p~ (U, V)=

U H(U,a, V). Since HU and HV are 1-connected, H(U,a, V)NH(U, b, V)

ae: Gz, y)
=¢ if a#b, and for each a€G(z,y) the restriction of p

H(U,a, V) — UxV
is bijective. Consequently, p is a covering map.

By definition, p~!(z,y)=G(x,») for z,y€X. Since G is connected, G(z,y)
and G(z, w) are 1-1 correspondence for any z,y, 2, wEX. Hence p is a covering
map determined by the cardinality of G(z,y) for z,y&X.

If we consider the subspace S¢(G, x) of G, then we have the following corollary
immediately.

COROLLARY 3.8. Let G be a connected groupoid over X. For each z in X, the
subspace St(G, x) of G is a covering space of X based at z.

THEOREM 3.9. Let G and G be groupoids over X and X, respectively. If ¢ :
G —> G is a morphism of groupoids such that 0b($):X —> X is a covering
map, then ¢ is also a covering map.

Proof. Consider the following diagram

G —— G
%i?———*»X}:;
PX¢

where p; and p, are the covering maps considered in Theorem 3.7, and the map
pxé is defined by (¢x¢) (z,3) =(¢(x), ¢(»)) for z,yX. Then the ahove
diagram commutes. Hence the morphism ¢ : G —> G is also a covering map.

4. Quotient groupoids

Let G be a groupoid over the topological space X, and N be a normal
subgroupoid of G. If H is an 1-connected local subgroupoid of G, then we can
easily see that H/N is also an 1-connected local subgroupoid of the quotient
groupoid G/N. Hence we can consider the induced topology T(H/N) on the
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quotient groupoid G/N. Throughout this section we assume that the groupoid G
has the induced topology G(H), and the quotient groupoid G/N has the induced

topology G(H/N).
THEOREM 4.1. G/N is a locally trivial topological groupoid over X with
(topologically) discrete object groups.

Proof. It is similiar to Theorem 3.3.

THEOREM 4.2. Let G be a connected groupoid over X, and N be a normal
subgroupoid of G. Then G/N is a covering space of the product space XX X.
Moreover if the cardinality of G {x}/Nix}, z€X is n, then G/N is the n-
fold covering space of XX X.

Proof. It is similiar to Theorem 3.7.

COROLLARY 4.3. Let G be a connected groupoid over X, and N be a normal
subgroupoid of G. Then the subspace St(G/N,z) of G/N is a covering space of
X based at x.

THEOREM 4.4. Let q: G —> G/N be the quotient map. Then q is a continuous
and open map.

Proof. Let W be a neighborhood of g(a), a=G. There exist UEN(H/N,
9,()) and VE%(H/N, 9,(a)) such that H/N(U, q(a), V)T W. H(U, a, V)
is a neighborhood of a and q(H (U, a, V))CH/N(U, g(@), V)CTW. Thus ¢q
is continuous.

Let W be an open subset of G. For any a& W there exist U€#(H, 8,(a))
and Ve¥%(H, 3,{(a)) such that H(U, a, V)C W. Then g(@) €H/NU, q(a), V)
=q(H(U, a, V))Cgq(W) since N is normal. Hence g(W) is an open subset of
G/N. Consequently g is an open map.

LEMMA 4.5. Let q : G —> G/N be the quotient map. If G is the identification
topology on G|N with respect to q, then T=0(H/N).

Proof. Since g is continuous, T(H/N)CT. Let We¥, and acs WCG/N.
Then we have ¢71(a) Cq~ ' (W)€ TG(H). Choose an element & in ¢ 1(a). Then
there exist U (H, 8,(6)) and VE# (H, 8,(b)) such that H(U, b, V)Cg 1 (W).
Consequently we get H/N(U, a, V)=¢q(H(U, b, V))Cqqg (W) W. Hence we
proved that WeG(H/N).

For any topological groupoid G and normal subgroupoid N of G, the quotient
groupoid G/N can be given the identification topology, but the proof of the
continuity used in the group case breaks down [4]. However the induced
topology G(H) on G makes G/N (with the identification topology) a topological
groupoid over X.

THEOREM 4.6. Let G/N be topologized by the identification map q:G —>
G/N. Then G/N is a locally trivial topological groupoid over X with (topological-
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ly)discrete object groups.

Proof. By Lemma 4.5, the identification topology on G/N is the same as the
induced topology B(H/N). Hence G/N is a topolgical groupoid over X by

Theorem 4. 1.

5. Covering morphisms

Let G, and G, be groupoids over the sets X and X, respectively, and ¢:
G, —> G, be a covering epimorphism. If X, is a topological space and G has
an 1-conneced local subgoupoid H, of G, thetn we topologize X; so that ¢ : X;
—-> X, is a covering map and ¢ : G, ——> G, isa topological covering morphism.

For z&X,, choose an element U of #(H,, ¢(x)). Let U(z) be defined by

{yeX;| there exists a€G(z,y) such that ¢(a) e HU}.
Then we can easily prove that the set of the forms of U(x) constitutes a basis
for a topology on Xj.

With this topology on X;, we have the followings.
THEOREM 5.1. ¢: Xy —> X is a covering map.

Proof. Let W be any open subset of X, and zE€¢~1(W). Choose an element
U of %(H, ¢(x)) such that UCW. Then U(z) is a basic neighborhood of z.
Let y&U(z). Then there exists a€Gi(z, ¥) such that ¢(e) eH,U. Hence we
have ¢(») €U, and so y€¢~1(U). Consequently, we get Ulx) co™W(U) co (W)

Thus ¢ is a continuous map.

Let V be any open subset of X;, and y€¢(V). Then there exists z€V such
that ¢(z) =y. Choose an element U of #(H;, ») such that U(z) < V. Then we
can easily see that UC¢(U(2)) C (V). Hence ¢ is an open map.

Let yEX,. Since ¢ : G;—> G, is a covering epimorphism, there exists a€G,
such that ¢(a)=1,. Hence we have 9y(a)=z€X], and ¢(z)=y. So ¢ is
surjective.

Let y€Xo, and UE#(Hy, y). Then we have ¢71(U) zzeglmU(x), where the
union is disjoint. In fact, if U(z) NU(z) #¢ for x,z€¢71(y), then there exists
weU(z) NU(2), and so exist a€Gi(z, w) and 6EG(z, w) such that ¢é(a),
¢ (B € HyU. Since ¢(z) =¢(2), ¢(a)=¢(5), and so a '=5"1. Consequently, we
have z==2.

Finally it is not hard to show that ¢ : U(z) —> U is bijective for each z&

¢ ().

Now we construct an 1-connected local subgroupoid H; of G;, and using this
subgroupoid H; we prove that the covering morphism ¢ : G; —> G is a topological
covering morphism.

LEMMA 5.2. Let Hi= {aEG|there is UsW (H,, 0o(¢(a)) such that ¢(a)&
H,U)}. Then Hy is an l-connected local subgroupoid of G;.
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Proof. For x&X;, choose an element U of %(H, ¢(z)). Then U(z) is a
basic neighborhood of z. It is enough to show that H,U(z) is an 1-connected
subgroupoid of G.

Let y,2€U(x). Then there exist a€G,(z,y) and &G (z,z) such that é(a)
and ¢(b) are in HyU. Since ¢(y) €U, UEH(H,, ¢(»)). Now baleG,(y,2)
and ¢(ba™) =¢(8)¢(a) '€ H,U. By definition of H,, ba'e H\(y, 2). Hence we
have H,(y, 2) #¢.

Let ¢,deH (y,z). Then ¢(c) and ¢(d) are in H,U, and so ¢lc)=¢(d).
Since ¢ is a covering morphism, ¢=d. Consequently, H,U(z) is 1-connected.

Let a and & be two elements of H,U(z) such that 3(6)=5;(a). Then ac
H,(y,2) and b€ H,(z,w) for some y, z, we U(z). By definition, there exist U,e
%(H; ¢(y)) and U,&¥%(H, ¢(z)) such that ¢(a) eH,U, and ¢(b) €H,U,. On
the other hand ¢(a) and ¢(8) are in Hy;U, and Uc#(H,. ¢(y)). Thus &(ba) =
o) ¢(@) €HU, and so bac H(y, w) CH,U(z).

Similarly we can prove that the inverse of each element of H,U(z) is also in
H,U(z). Hence H,U(z) is a subgroupoid of G,.

THEOREM 5.3. ¢ : G, —> G, is a topological covering morphism.

Proof. Let a€Gy, and W be any neighborhood of ¢(a), Then there exist U,
EX(Hy, 89(¢(@)) and Vo,eX(H,, 8,(4(a)) such that H,(U, ola), Vo) W.
Since ¢ : X; —> X, is continuous, there exist U,E%(H,, dy(a)) and V€% (H,,
01(a)) such that ¢(U) C U, and ¢(V;)C V,. By definition of H, ¢ (Hy)) CH,.
Hence we get ¢(H (U}, a, V1)) CH,(U, ¢(a), Vo)C W. Thus ¢ is continuous.

Let W be any open subset of Gy, and ac¢(W). Then there exists b& W such
that ¢(b) =a, and exist U,€¥%(H;, 9,(8)) and V,e#(H,, 0:(b)) such that H,
(U, &, Vi) CW. Furthermore there exist U,e#(H, 0,(a)) and VoW (H,,
01(a)) such that Uy(9,(8)) C Uy and V,(3,(8))CVi. We get Hp(Us, a, Vo) C
S(H(Uy, b, V))CH(W). Thus ¢(W) is an open subset of G,. Hence ¢ is an
open map. Consequently, we proved that the restriction of ¢

St(Gy, ) —> St (G, ¢(2))
is a homeomorphism for each zeX;.
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