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A CLASS OF FUNCTIONS a-PRESTARLIKE OF ORDER 3

SHIGEYOSHI OwA AND B. A. URALEGADDI

1. Introduction

Let @ denote the class of functions f(2) of the form
(1.1 f(z)zz—i—ia,,z"

which are analytic in the unit disk %= {z: |2]|<1}.

And let J denote the subclass of ¢ consisting of analytic and univalent functions
f(z) in the unit disk %. A function f(2) of S is said to be starlike of order
if and only if

(1-2) Re {_sz%z()i)_} >Sa (=€)

for some a(0=<a<{1). We denote the class of all starlike functions of order «
by <J*(a). Further a function f(z) of < is said to be convex of order « if and
only if

. 2f"(2)

(1.3) Re{1+- 4 (i) }>a (z<0)
for some @ (0=a<1). And we denote the class of all convex functions of order
a by K(a). It is well-known that f(z) €& (a) if and only if zf’ () el*(a).
Note that J*(0)=J* and K(0)=X for a=0.

These classes J* (a) and K (a) were first introduced by Robertson {3], and
latter were studied by Schild [5], MacGregor [1] and Pinchuk [2].

Now, the function

1.4) Se(2)= —H‘:z—z)'z‘“—_;)—
is the well-known extremal function for J*(a). Setting
ooy L =20
(1.5) (a, ”)———-(—';-:T)—,— (n=2,3,4,...),

S.(2) can be written in the form
1.6 Sa(2) =2+ 3 Cla, n) 2"
Then we can see that C(a, n) is decreasing in « and satisfies
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o (a<1/2)
(1.7) limC(a, n) ={1 (@=1/2)
"’ 0 (a>1/2).

Let f+g(z) denote the convolution or Hadamard product of two functions f(z)
and g(z), that is, if f(2) is given by (1.1) and g(2) is given by

(1.8) g(2) = z%Zé byen,
then
(1.9) fre(®) =2+ 5 asbur”.

Let R(a,[) be the subclass of 4 consisting of functions f(z) such that fx
Se(z) €F*(B) for 0=a<1 and 0=53< 1. Further let €(a, 8) be the subclass of 4
consisting of functions f(z) satisfying 2f’ (2) eR(e, 8) for 0=a<1 and 0=5<1.
R{a, B) is called to be the class of functions a-prestarlike of order 8 and was
introduced by Sheil-Small, Silverman and Silvia [6].

Let @ denote the subclass of { consisting of functions whose nonzero coefficients,
from the second on, are negative. That is, an analyic function f(z) is in the
class @ if it can be expressed as

(1.10) F@ =25 ans" (@ 20).

Further we denote by F(a,f) and €(a,f) the classes obtained by taking
intersections, respectively, of the classes R(a, ) and @(a, 8) with @.

The class (a, 8) was recently studied by Silverman and Silvia [7]. In this
paper, we study the class @(a, §) by using the results for (a, §) given by
Silverman and Silvia [7].

2. Coefficient inequalities

We need the following result by Silverman and Silvia [7].

~LEMMA. Let the function f(z) be defined by (1.10). Then f(2) is in the class
R(a, B) if and only if

@1 3 (1-p)Cla, W a,<1-5.
The result is sharp.

THEOREM 1. Let the function f(2) be defined by (1.10). Then f(2) is in the
class @(a, B) if and only if

2.2) B n(-p)Cla, Ma,S1-4.
The result is sharp.

Proof. Since f(z)€@(a, ) if and only if zf' (z)e®(a, B), we have the
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theorem by replacing a, with na, in Lemma.

Further we can see that the
function f(z) given by

e — 1_/3 "
2.3 f&)=zx SO B (n=2)

is an extremal function for the theorem.

COROLLARY 1. Let the function f(2) defined by (1.10) be in the class O(a, B.
Then

15
(2.4) TR Cla

Sfor n22. Egquality holds for Sunction f(z) given by (2. 3).

REMARK. In view of Lemma and Theorem 1, we know that €(a, 8) c&(a, B.
THEOREM 2. Let

2.5) fi(z) =2
and
2.6) O T (n22).
Then f(z) is in the class @(a, ) if and only if it can be expressed in the form
@7 F® =5 fo(2),
where 3,20 for neN={1,2,3...} and
(2.8) i A=1.
Proof. Assume that
(2.9) F&=5 4 fa()
=-F n(n—}?)-ée(a, 7y "
=5~ 1 22",
where
(2.10 =

1-8
W RG=HC @
Then we observe that

(2.11) L rtn=6Cna=5 (1-p),
=(1~p A~
=1-8.

This gives that f(z) belongs to the class @(a, ) by means of Theorem 1.
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Conversely, assume that f(z) is in the class @(a, B) for 0<a<1 and 0=5<1.
Then we have

1-8
(2.12) = A i—pC@n) (nz2)
by means of Theorem 1. Setting
@.13) f=2a=fClan) n=2)
and
(2.14) h=1-3 L

we have the representation (2.7). This completes the proof of the theorem.

3. Distortion theorems

As a consequence of Theorem 2, we have the following distortion theorems
for f(2) belonging to €(a, f).

THEOREM 3. Let the function f(z) defined by (1. 10) be in the class O(a, B).
Then

3.1 )| ZMax{o, |2l =t 1217
and
< 1-5 2
3.2 lf(z)l—lz|+“_4(1'_'a,) (2_/9) =]

for €. The results are sharp.

Proof. By Theorem 2, we can know that

o« . 1—,3 n
3.9 £ | 2Maxfp, 1l = Max — LB 217
and

(3.4) @IS e+ Max Il 2l
for z€. Let

. ) N 1-8 .

(3.5) G(a, B, lzlyn)—mld .
Since

(3.6) cmm+n=£i%ﬁ£am@

for |z|#0 and n=2, we can see that
(3.7 G, B, |z, m) 2G(a, B, 2], n+1)
if and only if
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(3.8) H(a, B, |zl,n)=(n+1) (n+1-B) (n+1—2a) —n2(n—pB) | z| =0.
It is easy that H(a, B, |2],n) is a decreasing function of a(0<a<1) for fixed
B0=p<1), n22 and |2|<{1, H(1, 8, |z|,n) is a decreasing function of 2] (=]
<1) for fixed S(0=5<1) and n=2, and H(1, B, 1, #») is an increasing function
of S0=8<1)for fixed n=2. Hence we show that
(3.9 H(a, B, |z],m)2H(, B, |z],n)
=H(1,51,n)
2H(1,0,1,n) =n2—n—1>0
for n=22. Thus we can see that the function G(a, 8, |2|,n) is decreasing in n
(n=2), hence further,

(3.10) @1 2Maxfo, |2l bs b2l
=MaX{0, lzl ‘m——]&%jﬁ- lzlz}
and
1-8 2
(3.11) lf(z)|§lz]+“mlzl
_ 1-5
=l =g e 1
for z1.
Finally, the bounds of the theorem are attained for function f(z) given by
(3.12) f(2) =z——w_1&;—(%_—®-zz.

COROLLARY 2. Let the function f(2) defined by (1.10) be in the class O(a, B).
Then f(2) is included in a disk with its center at the origin and radius r given
by

1-8
4(1—a)(2—H)

THEOREM 4. Let the function f(z) defined by (1.10) be in the class O(a, B).
Then

3.13 r=1+4

(3.14) | £ )| = Max{o, 1——2(1_“;(‘;?@_12@
and
(3.15) LF! () 'éHWL)_(ﬁT—ﬁ)“'z'

for 0=p<1, and either 0=a=<(5-8)/2(3—f) or |z|=(3—8)/2(2—p). The
results are sharp.

Proof. We note that
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7] — I_IB n—
(316 /2 2 Max{o, 1 b T AN '
and
/ 1-8 -

by means of Theorem 2. It suffices to prove that
(3.18) Gi(a, B, Izl,n):ﬁc%x—,m-lzl”‘l
is decreasing in » (n22). We can see that, for |z]|+0,
(3.19) Gi(a, B, |z],n) 2Gi(a, B, | 2], n+1)
if and only if
(3.200  Hi(e, B, |zl,n)={n+1-p) (n+1—2a) —n(n—F) |z| 0.
Hi(a, B, |2],n) is decreasing in a¢(0=a< (5—8)/2(3—F)) for fixed B0=5<1),
|z] (]2]<{1) and n=2. Thus we obtain that
(8.21)  Hi(e, B, 2|, m2H; ((6—8)/2(3—P), 8, |z],n)

=n(a—p) (1~ |2 +-L=2=2.
=0

for 0<8<1, |2[<1 and n=2.
Next, Hi(a,B, |z|,n) is decreasing in |z] (|z]/<1) and increasing in 7 (n=
2). Hence we can see that
(3.22) Hi(a, 8, |2z],n) 2 H (1, 8, |zl,n)
=0.
This gives two estimates (3.14) and (3.15) we require.

Finally the bounds of the theorem are attained for function f(z) given by (3.
12).

4. Radii of starlikeness and convexity

Since f(z) defined by (1.10) is univalent in the unit disk ¥ if Z}:na,.él, we

can see that f(z) defined by (1.10) belongs to the class & if 0<a=<(3—p)/
2(2—p) with the aid of Theorem 1.

THEOREM 5. Let the function f(z) defined by (1. 10) be in the class €(a, f)
with 0=0<1 and 0Sa=(3—0)/2(2—p). Then f(2) is starlike of order (0
0<1) in the disk |z|<r,, where

— inf [2(—B)(1—6)C(a,n) |}/ =D,
4.1 Tl—,e{'xx’l—fu] { (1—p8) (n—2a) }

The result is sharp.
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Proof. We employ the same technique as used by Sarangi and Uralegaddi [4].
Note that

5 (—1)a,]z|*
S n=2

4.2) 2f () -1{= =
f(z) l 1_§2a”lziu—l
=1-3
if and only if
& n—é n—
@.3) Z:i( 1—5‘)“"'zl =1
By virtue of Theorem 1, we need only find values of |z| for which
n—0o aie 0= Ca,n)
.4 (f=5)1els 5

for n=2, which will be true when |2|<r,. Further we can see that the result
is sharp for function f(z) given by

e 1—-8 "
This completes the proof of the theorem.

COROLLARY 3. Let the function f(z) defined by (1.10) be in the class O(e, f)
with 0=8<1 and 0<a=(3—P5)/2(2—P). Then f(2) is univalent and starlike for
2| <rs, where

. (n—,B)C(a, ) l/(n—l)'
(4.6) rz“,e}v’lfm{ 1-p s }

The result is sharp.
THEOREM 6. Let the function f(z) defined by (1.10) be in the class €(a, B)

with 0=8<1 and 0=a=(3—p)/2(2—f). Then f(z) is convex of order d(0=0
<1) in the disk |z|<rs, where

= i (n—pB) 1—0)Cla,n) |1/ D,
4.7) 7"3_—,,eglfm{ (EOICET)) }

The result is sharp.

Proof. Since f(z) is convex of order d if and only if zf'(2) is starlike of
order 6, we have the theorem by replacing a, with na, in Theorem 5. Further
the result is sharp for function f(z) given by

[ 1_18 7"
COROLLARY 4. Let the function f(z) defined by (1.10) be in the class @(a, B)

with 0=8<1 and 0=a= (3—5)/2(2—pB). Then f(2) is univalent and convex for
|z|<ry, where
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. ( —,B)C(a, n) 1/(n=1)
4.9 T4 ﬁ,,e}vllﬁn {_Ln‘(q—_}

The result is sharp.

5. Modified Hadamard product
Let f(2) be defined by (1.10) and g(z) be defined by
.1 g(2) =z_§; by (6,20).

Then we denote by fkg(z) the modified Hadamard product of f(2) and g(z),
that is,

(5.2) frgl(e) =z2— iza,bnz".

THEOREM 7. Let the function f(z) defined by (1.10) be in the class & (a, B
with 0=B<1 and 0=a=< (3—8) /2(2—p). Then the modified Hadamard product
Sxf(2) is also in the same class R(a, ).

Proof. In view of Lemma, we can see that

o e (=%
5.3) En=BClamals 5 st
=1-8

for 0=8<1 and 0=a=<(3~8)/2(2—pB). This proves that fxf(2) e®(a, )

THEOREM 8. Let the function f(z) defined by (1.10) be in the class @(a, B
with 0=8<1 and 0=a=(7—38)/4(2—pB). Then the modified Hadamard product
fxf(2) is also in the same class @(a, B).

The proof of Theorem 8 is obtained by using the same technique as in the

proof of Theorem 7 with the aid of Theorem 1.

THEOREM 9. Let the function f(z) defined by (1.10) be in the class Xa, )
with 0=8<1 and 0=<a=<(3—pB) /4. Further let the Sunction g(z) defined by (5.1)
be in the class O(a, B) with 0=<1 and 0<a<3—p)/4. Then the modified
Hadamard product fxg(z) is in the class O(a, B).

Proof. By using Lemma, we have

“E2 =) G

for n22. Hence, with the aid of Theorem 1, we obtain that

(5.5) gzn(n—ﬁ)C(a, n) aub,

5.4)

1-6_ §0 :
=F=aEp AN PC@nh,
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(1-4)*
=0 =)
<1-8

for 0S8<1 and 0sSa< (3—p)/4. Consequently we have the theorem.
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