A CLASS OF FUNCTIONS α -PRESTARLIKE OF ORDER β

SHIGEYOSHI OWA AND B. A. URALEGADDI

1. Introduction

Let A denote the class of functions f(z) of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $\ell = \{z : |z| < 1\}$.

And let \circlearrowleft denote the subclass of \mathcal{A} consisting of analytic and univalent functions f(z) in the unit disk \mathcal{U} . A function f(z) of \circlearrowleft is said to be starlike of order α if and only if

(1.2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \qquad (z \in \mathcal{U})$$

for some $\alpha(0 \le \alpha < 1)$. We denote the class of all starlike functions of order α by $\circlearrowleft^*(\alpha)$. Further a function f(z) of \circlearrowleft is said to be convex of order α if and only if

(1.3)
$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha \qquad (z \in \mathcal{U})$$

for some α $(0 \le \alpha < 1)$. And we denote the class of all convex functions of order α by $\mathcal{K}(\alpha)$. It is well-known that $f(z) \in \mathcal{K}(\alpha)$ if and only if $zf'(z) \in \mathcal{J}^*(\alpha)$. Note that $\mathcal{J}^*(0) \equiv \mathcal{J}^*$ and $\mathcal{K}(0) \equiv \mathcal{K}$ for $\alpha = 0$.

These classes \mathcal{J}^* (α) and $\mathcal{K}(\alpha)$ were first introduced by Robertson [3], and latter were studied by Schild [5], MacGregor [1] and Pinchuk [2].

Now, the function

(1.4)
$$S_{\alpha}(z) = \frac{z}{(1-z)^{2(1-\alpha)}}$$

is the well-known extremal function for $\Im^*(\alpha)$. Setting

(1.5)
$$C(\alpha, n) = \frac{\int_{k-2}^{n} (k-2\alpha)}{(n-1)!} \qquad (n=2, 3, 4, ...),$$

 $S_{\alpha}(z)$ can be written in the form

$$(1.6) S_{\alpha}(z) = z + \sum_{n=2}^{\infty} C(\alpha, n) z^{n}.$$

Then we can see that $C(\alpha, n)$ is decreasing in α and satisfies

(1.7)
$$\lim_{n\to\infty} C(\alpha, n) = \begin{cases} \infty & (\alpha < 1/2) \\ 1 & (\alpha = 1/2) \\ 0 & (\alpha > 1/2). \end{cases}$$

Let f*g(z) denote the convolution or Hadamard product of two functions f(z) and g(z), that is, if f(z) is given by (1.1) and g(z) is given by

$$(1.8) g(z) = z + \sum_{n=2}^{\infty} b_n z^n,$$

then

$$(1.9) f*g(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$

Let $\mathcal{R}(\alpha, \beta)$ be the subclass of \mathcal{A} consisting of functions f(z) such that $f * S_{\alpha}(z) \in \mathcal{S}^*(\beta)$ for $0 \le \alpha < 1$ and $0 \le \beta < 1$. Further let $\mathcal{C}(\alpha, \beta)$ be the subclass of \mathcal{A} consisting of functions f(z) satisfying $zf'(z) \in \mathcal{R}(\alpha, \beta)$ for $0 \le \alpha < 1$ and $0 \le \beta < 1$. $\mathcal{R}(\alpha, \beta)$ is called to be the class of functions α -prestarlike of order β and was introduced by Sheil-Small, Silverman and Silvia [6].

Let $\overline{\mathcal{O}}$ denote the subclass of \mathcal{A} consisting of functions whose nonzero coefficients, from the second on, are negative. That is, an analytic function f(z) is in the class $\overline{\mathcal{O}}$ if it can be expressed as

(1.10)
$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \qquad (a_n \ge 0).$$

Further we denote by $\tilde{\mathcal{X}}(\alpha, \beta)$ and $\tilde{\ell}(\alpha, \beta)$ the classes obtained by taking intersections, respectively, of the classes $\mathcal{X}(\alpha, \beta)$ and $\ell(\alpha, \beta)$ with $\tilde{\ell}$.

The class $\widetilde{\mathcal{R}}(\alpha, \beta)$ was recently studied by Silverman and Silvia [7]. In this paper, we study the class $\widetilde{\mathcal{Q}}(\alpha, \beta)$ by using the results for $\widetilde{\mathcal{R}}(\alpha, \beta)$ given by Silverman and Silvia [7].

2. Coefficient inequalities

We need the following result by Silverman and Silvia [7].

LEMMA. Let the function f(z) be defined by (1.10). Then f(z) is in the class $\tilde{\mathcal{A}}(\alpha,\beta)$ if and only if

(2.1)
$$\sum_{n=2}^{\infty} (n-\beta) C(\alpha, n) a_n \leq 1-\beta.$$

The result is sharp.

THEOREM 1. Let the function f(z) be defined by (1.10). Then f(z) is in the class $\mathcal{Q}(\alpha, \beta)$ if and only if

(2.2)
$$\sum_{n=2}^{\infty} n(n-\beta)C(\alpha,n)a_n \leq 1-\beta.$$

The result is sharp.

Proof. Since $f(z) \in \tilde{\ell}(\alpha, \beta)$ if and only if $zf'(z) \in \tilde{\ell}(\alpha, \beta)$, we have the

theorem by replacing a_n with na_n in Lemma. Further we can see that the function f(z) given by

(2.3)
$$f(z) = z - \frac{1-\beta}{n(n-\beta)C(\alpha, n)} z^n \qquad (n \ge 2)$$

is an extremal function for the theorem.

COROLLARY 1. Let the function f(z) defined by (1.10) be in the class $\tilde{\ell}(\alpha, \beta)$. Then

$$(2.4) a_n \leq \frac{1-\beta}{n(n-\beta)C(\alpha,n)}$$

for $n \ge 2$. Equality holds for function f(z) given by (2.3).

REMARK. In view of Lemma and Theorem 1, we know that $\tilde{\mathcal{Q}}(\alpha,\beta) \subset \tilde{\mathcal{A}}(\alpha,\beta)$.

THEOREM 2. Let

$$(2.5) f_1(z) = z$$

and

(2.6)
$$f_n(z) = z - \frac{1-\beta}{n(n-\beta)C(\alpha,n)} z^n \qquad (n \ge 2).$$

Then f(z) is in the class $\widetilde{\mathbb{Q}}(\alpha,\beta)$ if and only if it can be expressed in the form

$$(2.7) f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z),$$

where $\lambda_n \geq 0$ for $n \in \mathbb{N} = \{1, 2, 3...\}$ and

$$\sum_{n=1}^{\infty} \lambda_n = 1.$$

Proof. Assume that

(2.9)
$$f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z)$$
$$= z - \sum_{n=2}^{\infty} \frac{1-\beta}{n(n-\beta)C(\alpha, n)} \lambda_n z^n$$
$$= z - \sum_{n=2}^{\infty} a_n z^n,$$

where

(2.10)
$$a_{n} = \frac{1-\beta}{n(n-\beta)C(\alpha,n)} \lambda_{n}.$$

Then we observe that

(2.11)
$$\sum_{n=2}^{\infty} n(n-\beta)C(\alpha, n) a_n = \sum_{n=2}^{\infty} (1-\beta)\lambda_n$$
$$= (1-\beta)(1-\lambda_1)$$
$$\leq 1-\beta.$$

This gives that f(z) belongs to the class $\widetilde{\ell}(\alpha,\beta)$ by means of Theorem 1.

Conversely, assume that f(z) is in the class $\tilde{\ell}(\alpha, \beta)$ for $0 \le \alpha < 1$ and $0 \le \beta < 1$. Then we have

$$(2.12) a_n \leq \frac{1-\beta}{n(n-\beta)C(\alpha,n)} (n \geq 2)$$

by means of Theorem 1. Setting

(2.13)
$$\lambda_{n} = \frac{n(n-\beta)C(\alpha, n)}{1-\beta} a_{n} \qquad (n \ge 2)$$

and

$$(2.14) \lambda_1 = 1 - \sum_{n=2}^{\infty} \lambda_n,$$

we have the representation (2.7). This completes the proof of the theorem.

3. Distortion theorems

As a consequence of Theorem 2, we have the following distortion theorems for f(z) belonging to $\tilde{\ell}(\alpha, \beta)$.

Theorem 3. Let the function f(z) defined by (1. 10) be in the class $\tilde{\ell}(\alpha, \beta)$. Then

(3.1)
$$|f(z)| \ge \operatorname{Max} \left\{ 0, |z| - \frac{1-\beta}{4(1-\alpha)(2-\beta)} |z|^2 \right\}$$

and

(3.2)
$$|f(z)| \le |z| + \frac{1-\beta}{4(1-\alpha)(2-\beta)} |z|^2$$

for $z \in \mathcal{U}$. The results are sharp.

Proof. By Theorem 2, we can know that

(3.3)
$$|f(z)| \ge \operatorname{Max} \left\{ 0, |z| - \operatorname{Max}_{n \in N - \{1\}} \frac{1 - \beta}{n(n - \beta)C(\alpha, n)} |z|^{n} \right\}$$

and

$$(3.4) |f(z)| \le |z| + \max_{n \in \mathbb{N} \setminus \{1\}} \frac{1-\beta}{n(n-\beta)C(\alpha,n)} |z|^n$$

for $z \in \mathcal{U}$. Let

(3.5)
$$G(\alpha, \beta, |z|, n) = \frac{1-\beta}{n(n-\beta)C(\alpha, n)} |z|^{n}.$$

Since

(3.6)
$$C(\alpha, n+1) = \frac{n+1-2\alpha}{n}C(\alpha, n)$$

for $|z| \neq 0$ and $n \geq 2$, we can see that

(3.7)
$$G(\alpha, \beta, |z|, n) \ge G(\alpha, \beta, |z|, n+1)$$

if and only if

(3.8)
$$H(\alpha, \beta, |z|, n) = (n+1)(n+1-\beta)(n+1-2\alpha)-n^2(n-\beta)|z| \ge 0.$$

It is easy that $H(\alpha, \beta, |z|, n)$ is a decreasing function of $\alpha(0 \le \alpha < 1)$ for fixed $\beta(0 \le \beta < 1)$, $n \ge 2$ and |z| < 1, $H(1, \beta, |z|, n)$ is a decreasing function of |z| (|z| < 1) for fixed $\beta(0 \le \beta < 1)$ and $n \ge 2$, and $H(1, \beta, 1, n)$ is an increasing function of $\beta(0 \le \beta < 1)$ for fixed $n \ge 2$. Hence we show that

(3.9)
$$H(\alpha, \beta, |z|, n) \ge H(1, \beta, |z|, n)$$

$$\ge H(1, \beta, 1, n)$$

$$\ge H(1, 0, 1, n) = n^2 - n - 1 > 0$$

for $n \ge 2$. Thus we can see that the function $G(\alpha, \beta, |z|, n)$ is decreasing in $n \pmod{2}$, hence further,

(3.10)
$$|f(z)| \ge \operatorname{Max} \left\{ 0, |z| - \frac{1-\beta}{2(2-\beta)C(\alpha,2)} |z|^2 \right\}$$

$$= \operatorname{Max} \left\{ 0, |z| - \frac{1-\beta}{4(1-\alpha)(2-\beta)} |z|^2 \right\}$$

and

(3.11)
$$|f(z)| \le |z| + \frac{1-\beta}{2(2-\beta)C(\alpha,2)} |z|^2$$
$$= |z| + \frac{1-\beta}{4(1-\alpha)(2-\beta)} |z|^2$$

for $z \in \mathcal{U}$.

Finally, the bounds of the theorem are attained for function f(z) given by

(3.12)
$$f(z) = z - \frac{1 - \beta}{4(1 - \alpha)(2 - \beta)} z^{2}.$$

COROLLARY 2. Let the function f(z) defined by (1.10) be in the class $\tilde{\ell}(\alpha, \beta)$. Then f(z) is included in a disk with its center at the origin and radius r given by

(3.13)
$$r = 1 + \frac{1 - \beta}{4(1 - \alpha)(2 - \beta)}.$$

Theorem 4. Let the function f(z) defined by (1.10) be in the class $\tilde{\mathcal{Q}}(\alpha,\beta)$. Then

(3.14)
$$|f'(z)| \ge \operatorname{Max} \left\{ 0, \ 1 - \frac{1-\beta}{2(1-\alpha)(2-\beta)} |z| \right\}$$

and

(3.15)
$$|f'(z)| \leq 1 + \frac{1-\beta}{2(1-\alpha)(2-\beta)} |z|$$

for $0 \le \beta < 1$, and either $0 \le \alpha \le (5-\beta)/2(3-\beta)$ or $|z| \le (3-\beta)/2(2-\beta)$. The results are sharp.

Proof. We note that

(3.16)
$$|f'(z)| \ge \operatorname{Max} \left\{ 0, \ 1 - \operatorname{Max}_{n \in N - (1)} \frac{1 - \beta}{(n - \beta) C(\alpha, n)} |z|^{n-1} \right\}$$

and

(3.17)
$$|f'(z)| \le 1 + \max_{n \in N-\{1\}} \frac{1-\beta}{(n-\beta)C(\alpha, n)} |z|^{n-1}$$

by means of Theorem 2. It suffices to prove that

(3.18)
$$G_1(\alpha, \beta, |z|, n) = \frac{1 - \beta}{(n - \beta)C(\alpha, n)} |z|^{n-1}$$

is decreasing in $n \ (n \ge 2)$. We can see that, for $|z| \ne 0$,

$$(3.19) G_1(\alpha,\beta,|z|,n) \ge G_1(\alpha,\beta,|z|,n+1)$$

if and only if

$$(3.20) H_1(\alpha, \beta, |z|, n) = (n+1-\beta)(n+1-2\alpha) - n(n-\beta)|z| \ge 0.$$

 $H_1(\alpha, \beta, |z|, n)$ is decreasing in $\alpha(0 \le \alpha \le (5-\beta)/2(3-\beta))$ for fixed $\beta(0 \le \beta < 1)$, |z|(|z| < 1) and $n \ge 2$. Thus we obtain that

(3.21)
$$H_{1}(\alpha, \beta, |z|, n) \ge H_{1}((5-\beta)/2(3-\beta), \beta, |z|, n)$$

$$= n(n-\beta)(1-|z|) + \frac{(1-\beta)(n-2)}{3-\beta}$$

$$\ge 0$$

for $0 \le \beta < 1$, |z| < 1 and $n \ge 2$.

Next, $H_1(\alpha, \beta, |z|, n)$ is decreasing in |z| (|z| < 1) and increasing in n ($n \ge 2$). Hence we can see that

(3.22)
$$H_{1}(\alpha, \beta, |z|, n) \ge H_{1}(1, \beta, |z|, n)$$
$$\ge H_{1}(1, \beta, (3-\beta)/2(2-\beta), 2)$$
$$= 0.$$

This gives two estimates (3.14) and (3.15) we require.

Finally the bounds of the theorem are attained for function f(z) given by (3. 12).

4. Radii of starlikeness and convexity

Since f(z) defined by (1.10) is univalent in the unit disk \mathcal{U} if $\sum_{n=2}^{\infty} na_n \leq 1$, we can see that f(z) defined by (1.10) belongs to the class $0 \leq \alpha \leq (3-\beta)/2(2-\beta)$ with the aid of Theorem 1.

THEOREM 5. Let the function f(z) defined by (1. 10) be in the class $\tilde{\mathcal{Q}}(\alpha, \beta)$ with $0 \le \beta < 1$ and $0 \le \alpha \le (3-\beta)/2(2-\beta)$. Then f(z) is starlike of order $\delta(0 \le \delta < 1)$ in the disk $|z| < r_1$, where

(4.1)
$$r_1 = \inf_{n \in N-[1]} \left\{ \frac{n(n-\beta)(1-\delta)C(\alpha,n)}{(1-\beta)(n-\delta)} \right\}^{1/(n-1)}.$$

The result is sharp.

Proof. We employ the same technique as used by Sarangi and Uralegaddi [4]. Note that

(4.2)
$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \frac{\sum_{n=2}^{\infty} (n-1) a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}}$$

$$\leq 1 - \delta$$

if and only if

$$(4.3) \qquad \qquad \sum_{n=2}^{\infty} \left(\frac{n-\delta}{1-\delta} \right) a_n |z|^{n-1} \leq 1.$$

By virtue of Theorem 1, we need only find values of |z| for which

(4.4)
$$\left(\frac{n-\delta}{1-\delta}\right)|z|^{n-1} \leq \frac{n(n-\beta)C(\alpha,n)}{1-\beta}$$

for $n \ge 2$, which will be true when $|z| \le r_1$. Further we can see that the result is sharp for function f(z) given by

$$(4.5) f(z) = z - \frac{1-\beta}{n(n-\beta)C(\alpha,n)} z^n (n \ge 2).$$

This completes the proof of the theorem.

COROLLARY 3. Let the function f(z) defined by (1.10) be in the class $\tilde{\mathbb{Q}}(\alpha, \beta)$ with $0 \le \beta < 1$ and $0 \le \alpha \le (3-\beta)/2(2-\beta)$. Then f(z) is univalent and starlike for $|z| < r_2$, where

(4.6)
$$r_2 = \inf_{n \in N-|\Omega|} \left\{ \frac{(n-\beta)C(\alpha,n)}{1-\beta} \right\}^{1/(n-1)}.$$

The result is sharp.

THEOREM 6. Let the function f(z) defined by (1.10) be in the class $\tilde{\ell}(\alpha, \beta)$ with $0 \le \beta < 1$ and $0 \le \alpha \le (3-\beta)/2(2-\beta)$. Then f(z) is convex of order $\delta(0 \le \delta < 1)$ in the disk $|z| < r_3$, where

$$(4.7) r_3 = \inf_{n \in N-|1|} \left\{ \frac{(n-\beta)(1-\delta)C(\alpha,n)}{(1-\beta)(n-\delta)} \right\}^{1/(n-1)}.$$

The result is sharp.

Proof. Since f(z) is convex of order δ if and only if zf'(z) is starlike of order δ , we have the theorem by replacing a_n with na_n in Theorem 5. Further the result is sharp for function f(z) given by

$$(4.8) f(z) = z - \frac{1-\beta}{n^2(n-\beta)C(\alpha,n)} z^n (n \ge 2).$$

COROLLARY 4. Let the function f(z) defined by (1.10) be in the class $\tilde{\mathbb{Q}}(\alpha, \beta)$ with $0 \le \beta < 1$ and $0 \le \alpha \le (3-\beta)/2(2-\beta)$. Then f(z) is univalent and convex for $|z| < r_4$, where

(4.9)
$$r_4 = \inf_{n \in N - \{1\}} \left\{ \frac{(n-\beta)C(\alpha, n)}{n(1-\beta)} \right\}^{1/(n-1)}.$$

The result is sharp.

5. Modified Hadamard product

Let f(z) be defined by (1.10) and g(z) be defined by

(5.1)
$$g(z) = z - \sum_{n=2}^{\infty} b_n z^n \qquad (b_n \ge 0).$$

Then we denote by f*g(z) the modified Hadamard product of f(z) and g(z), that is,

$$(5.2) f*g(z) = z - \sum_{n=0}^{\infty} a_n b_n z^n.$$

THEOREM 7. Let the function f(z) defined by (1.10) be in the class $\widetilde{\mathcal{R}}(\alpha, \beta)$ with $0 \le \beta < 1$ and $0 \le \alpha \le (3-\beta)/2(2-\beta)$. Then the modified Hadamard product f*f(z) is also in the same class $\widetilde{\mathcal{R}}(\alpha, \beta)$.

Proof. In view of Lemma, we can see that

(5.3)
$$\sum_{n=2}^{\infty} (n-\beta) C(\alpha, n) a_n^2 \le \frac{(1-\beta)^2}{2(1-\alpha)(2-\beta)} \le 1-\beta$$

for $0 \le \beta < 1$ and $0 \le \alpha \le (3-\beta)/2(2-\beta)$. This proves that $f*f(z) \in \tilde{\mathcal{R}}(\alpha, \beta)$

THEOREM 8. Let the function f(z) defined by (1.10) be in the class $\tilde{\ell}(\alpha, \beta)$ with $0 \le \beta < 1$ and $0 \le \alpha \le (7-3\beta)/4(2-\beta)$. Then the modified Hadamard product f*f(z) is also in the same class $\tilde{\ell}(\alpha, \beta)$.

The proof of Theorem 8 is obtained by using the same technique as in the proof of Theorem 7 with the aid of Theorem 1.

THEOREM 9. Let the function f(z) defined by (1.10) be in the class $\tilde{\mathcal{R}}(\alpha, \beta)$ with $0 \le \beta < 1$ and $0 \le \alpha \le (3-\beta)/4$. Further let the function g(z) defined by (5.1) be in the class $\tilde{\mathcal{Q}}(\alpha, \beta)$ with $0 \le \beta < 1$ and $0 \le \alpha \le (3-\beta)/4$. Then the modified Hadamard product f*g(z) is in the class $\tilde{\mathcal{Q}}(\alpha, \beta)$.

Proof. By using Lemma, we have

(5.4)
$$a_n \le \frac{1-\beta}{2(1-\alpha)(2-\beta)}$$

for $n \ge 2$. Hence, with the aid of Theorem 1, we obtain that

(5.5)
$$\sum_{n=2}^{\infty} n(n-\beta)C(\alpha,n)a_nb_n \leq \frac{1-\beta}{2(1-\alpha)(2-\beta)} \sum_{n=2}^{\infty} n(n-\beta)C(\alpha,n)b_n$$

$$\leq \frac{(1-\beta)^2}{2(1-\alpha)(2-\beta)}$$

$$\leq 1-\beta$$

for $0 \le \beta < 1$ and $0 \le \alpha \le (3-\beta)/4$. Consequently we have the theorem.

ACKNOWLEDGEMENT. The authors would like to thank Dr. S. M. Sarangi for his thoughtful encouragement and countless helpful advices in preparation of this paper.

References

- 1. T.H. MacGregor, The radius of convexity for starlike functions of order 1/2, Proc. Amer. Math. Soc. 14 (1963), 71-76.
- 2. B. Pinchuk, On starlike and convex functions of order α , Duke Math. J. 35 (1968), 721-734.
- 3. M. S. Robertson, On the theory of univalent functions, Ann. Math. 37 (19 36), 374-408.
- S. M. Sarangi and B. A. Uralegaddi, The radius of convexity and starlikeness for certain classes of analytic functions with negative coefficients I, Rendiconti Accademia Nazionale dei Lincei, 65 (1978), 38-42.
- A. Schild, On starlike functions of order α, Amer. J. Math. 87 (1965), 65-70.
- T. Sheil-Small, H. Silverman and E. Silvia, Convolution multipliers and starlike functions, J. Analyse Math. 41 (1982), 181-192.
- 7. H. Silverman and E. Silvia, Subclasses of prestarlike functions, (to appear).

Department of Mathematics Kinki University Osaka, Japan and Department of Mathematics Karnatak University Dharwad, India