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EVALUATION OF SOME CONDITIONAL WIENER INTEGRALS

KUN Soo CHANG AND Joo Sup CHANG

1. Introduction

J. Yeh has recently introduced the concept of conditional Wiener integrals
which are meant specifically the conditional expectation E*(Z|X) of a real or
complex valued Wiener integrable functional Z conditioned by the Wiener
measurable functional X on the Wiener measure space (A precise definition of
the conditional Wiener integral and a brief discussion of the Wiener measure
space are given in Section 2). In [3] and [4] he derived some inversion formulae
for conditional Wiener integrals and evaluated some conditional Wiener integrals
E»(Z|X) conditioned by X(z)=x(t) for a fixed £>>0 and z in Wiener space.
Thus E*(Z|X) is a real or complex valued function on Rl

In this paper we shall be concerned with the random vector X given by X(x)
=(z(s1), ..., z(ss)) for every x in Wiener space where 0=s,<s1< ... s,=2. In
Section 3 we will evaluate some conditional Wiener integrals E*(Z|X) which
are real or complex valued functions on the n-dimensional Euclidean space R*.
Thus we extend Yeh’s results [4] for the random variable X given by X(x)=
z{®) to the random vector X given by X (x) = (x(s1),..., x(s,)).

2. Preliminaries

For a fixed £>0 let T=[0,z]. Let C(T) be the collection of all R-valued
continuous funtions x defined on T such that z£(0)=0. The space C(T) with the

uniform topology is called the Wiener space. Consider the Wiener measure space
(C(T), BW*, m,) where B is the algebra of subsets I of C(T) of the type

2.1 I={z=C(T) : (x(s1), ..., z(s5)) €EB}
where 7 is an arbitrary natrural number, 0=s50<(51<...<[s,=¢, and B is an arbitrary
member of the g-algebra Z(R") of the Borel sets in R*; m, is a probability
measure on the algebra B defined for I as in (2.1) by

(2.2) ma(D) = {@0)" [1 (si=si-0)

[ exo{~ @2 im0 Gimsico) | dma )

where 7= (7, ..., 7,) €ER?, 7,=0 and m,, is the Lebesgue measure on (R*, £(R"));
W* is the g-algebra of Carathéodory measurable subsets of C(7T") with respect to
the outer measure derived from the probability measure m, on the algebra B
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which in particular contains the g-algebra ¢(%8) generated by 8.

A real valued functional F on C(T) is said to be Wiener measurable if it is
a measurable transformation of (C(T), ®*) into (R, &£(RY)). For a Wiener
measurable functional F we write

2.3) E“(F) for f oo, F@) dmy(@)

whenever the integral, i.e. the Wiener integral, exists. A real valued Wiener
measurable functional F on C(T) is said to be Wiener integrable or m,,~integrable
if the Wiener integral of F exists and is finite.

The following theorem shows the relation between the Wiener integal and the

Lebesgue integral. We need it in the following section. We will state it without
proof [5].

THEOREM 2.1. If F is a real or complex valued Junctional on C(T) of the
type

(2.4) Fx)=f(z(s1), ..., 2(sp)) for z&C(T)
where f is a real or complex valued Lebesgue measurable function on R* and
0<s1<loo.ls, 5t then F is Wiener measurable and

2.5) Ev(F) ¥ {(275)"‘& (S."“Si—x)}_%
[t > exo{=/2) & =102 (=510} s )

where throghout this paper the notation “%” means that the existence of one side
in (2.5) implies that of the other as well as the equality of the two.

Let X be a R*-valued Wiener measurable function on the Wiener measure
space (C(T), B*, m,). The set function Py on (R*, &(R") defined by Pyx
(B) =my, (X 1(B)), BER(R"), is a probability measure on (R", ARM) and is
called the 7-dimensional probability distribution determined by the random vector
X.
Let X and Z be the R*-valued and the real valued Wiener measurable
functionals on the Wiener measure space (C(T), W*, m,) respectively with

E*(|Z])<{co. The equivalence class of & (R*)-measurable and Px-integrable
functions f on R* satisfying

(2.6) [ 2@ dme(@y=[ fw) dPxw

for every B in Z(R") is called the conditional Wiener integral of Z given by X

and is denoted by E¥(Z|X), the equivalence relation being that of a.e. equality
with respect to Py.

From the Radon-Nikodym Theorem follows that such a function [ always exists
and is determined uniquely up to a null set in (R, AR, Px). We shall use
E*(Z|X) to mean either the class of all such functions f or a particular version
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in it depending on the context. Thus

@.7) Sy 20 dma@) = [ E=(21%) @) dPxw
for every B in Z(R").

3. The evaluation of some conditional Wiener integrals

In this section we introduce the inversion formula for conditional Wiener
integrals and then we will evaluate some conditional Wiener integrals E*(Z|X)
of a real or complex valued Wiener integrable functional Z conditioned by
X(x)=(x(s), ..., z(sp)) for every z in C(T) where 0==5<5:<...< s =L.

PROPOSITION 3.1. Let X and Z be the measurable ¢ransformation of (C(T),
B*) into (R*, BR")) and (R, &BRY)), respectively, with E*(|Z|)<lco. Let
g be a measurable transformation of (R, AB(R%) into (R, B(RY). Then

B.D E"’((goX)Z)ifR"g(m,~-~,77n)E'”(XIX) (115 o0 72) dPx (71, ooy W)

Proof. This proposition is a particular case of Proposition 3 in [3], that is,

we adopted our probability space (C(T), B* m,) and the measurable space
(R*, &(R").

PROPOSITION 3.2. Let X and Z be as in Proposition 3.1. Assume that Px<my,

on (R", B(R"). For (yy,...,7,) €R* and positive numbers ry, ry, ..., and r,, let
J 8}‘1’ ’;:g be a function on R* defined by

TGP (o)

@rirger) ™t for (si, ..., s,) eXx [9i=ri, mitri]
i=1

0 for (si, ..., $,) $é€ [ni—ry pitril.

Then there exists a version of E*(Z|X) jﬁ:f such that

E(Z1X) Ot oo 1) G2 Gty s 70)

—  lim E’”[(Jgi"“”;';goX)Zj

(ryy s ra)=(0, -, 0) 3 ene

Jor (my,....7,) ER~

Proof. Substituting J8711’ "";"g in the place of g in Proposition 3.1, we have
1 w (ﬁ, ---’ru)o
(rl‘.-"rlngg(10...‘,o)E ((J(771, wes ) X)2)

= dim [ (G EZIX) (s

Crgs ey )=, -, 0D,
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d
dﬁ (81, eeey $p) dmy, (51, .00, Sp).

Let f= E'”(ZIX) dPX . Then f is my~integrable since Px<m; and E¥(Z|X) is

Py-integrable. It is well known that if f is my-integrable on R" then

(3.2) lim @), FG) dmy (@) = F Oty vy 70)
(r1a ey Pad=(0, 0,02 i:{(lLv--—

rgitril

for a.e. (41, ..., 7y in (R?, B(R"), my) [1; p.78]. From (3.2) follows our
Proposition 3. 2.

For z&C(T) consider the average value of z over the time interval T, i.e.
3
(1/t)f0x(s) ds. Now we evaluate the conditional Wiener integral for Wiener

integrable functionals conditioned by X(x) = (2(s), ..., x(s,)) where 0=s,<5;<
e lsp,=t.

THEOREM 3.1. For x=C(T), let Z be the average value of x over the time
interval T, i.e. Z(z)=(1/t) J; x(s) ds, and X(x)=(x(s1),..., x(s,)) where 0=
50<81<...<sp=t. Then the conditional Wiener integral of Z given X is

E¥(Z1X) (oo 1) = (1/20) 3] Gims12) (a1
where x(s;) =n; for i=0,1,...,n
Proof. Since |Z()1=1/2) [ |2()] du and
Ex (@)= @) "} wlexp(—w?/2u) ding () = (2u/)",
we have
B/ [ 2@ 1dw =10 [ B*(l2@ ) du=@VE/D (/)"

Therefore E¥(|Z|) is finite and so E¥(Z|X) exists.
According to Proposition 3.2, a version of E¥(Z|X) d X

is given by

(3-3) E*CIX) Ot 1) 2 () = Lim E=(( 00 7o) 2)
where (91, ..., 7,) €R*. With our Z and X, we have
G B G 0D =R 1
were
L= 22 @), o 26 WD [ ) d]
M1, veer D) Si-1

for i=1,2, ..., n.
Here X{((si, ..., $p), ) =C(x(s1), «v, () for ((s5 ..., 80, 2)ET2XC(T)
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is Lebesgue X Wiener measurable since it is continuous on the product space T*
XC(T). To apply the Fubini’s Theorem, observe that

T @),y s )2 @) | £ (121 2 |

for (#,2)€ TXC(T) and by (2.5)
fTE‘”((l/2"r1...r,,) l2()|) du

= (1/2"r1...r")fT{(2xu) —%J‘Rl |w|exp(—w?/2u) dmy (w)}dmL ()

= (1/2%..r) (2% ] (32%) < oo
hus by the Fubini’s Theorem and (2.5), we have

L= Wazrrerd [ @D s im0 ] (5,

J=
1

(3.5) {f leﬁ exp{, (B—ai? _ (a;—p)? {

2(u—s;-1) 2(s;—u) !

RSN TEE ]
=1

14 lay—ay)?
Cxp{ 72]_-;;}_1_} dp day...da,} dmy (u)

for i=1,2, ..., n. Here/
. ” (B )?  (ai—p)?
(3' 6) f»mﬂ exp{ 2(”—3,'_11) 2 (Si—u) }dﬁ

_ _Gimwaiat (u—siDa; /2 (u—s;_)) (si—u) {__ (ai—a;_,)?
- SiTS8i-1 / Si—8i-1 exp 2(si—si_1) }
The equality in (3.6) follows from the formula;

6.7 —721%:—; ly’eXP{—yz/%} dmi(y)=1,0, v for p=0,1,2

respectively, with v>>0. Substituting (3.6) for the right-hand side of (3. 5), we
have

CR)) L= ﬁf » (@1t ay) { (2r) ”'_lj (si—s;-1) “

X Lpi—rivnitr]l
i=1

exp{(~1/2) 3 (@ = 0% (o810} das .y

for i=1,2,..., n. Substituting (3.8) for the right-hand side of (8.4) and by
(3.3) and (3.2), we have

E(Z1X) (s )25, .. 7,

=(1/2¢) Zj:l (se—si1) it 7imy) {(275) " '_[jl (Si“'si~l)}_%
exp{(—1/2)§ =11 % (si—s;-1)} .
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Therefore we obtain
E*(Z1X) Gty ooy 1) = (1/26) 5} (5= 0-0) (ricat 1)

since
3.9) AP g ) = {207 [ im0}
exp] (~1/2) & =10 (si=5i-0) |
It is of interest to note that from (2.7), (3.7), and by Theorem 3.1
E@)=[ 2@ dmy@)=[ FZ1X) @dPx()
— {0 i (im0} (& Gmsed a0}
exp{(~1/2) & (13- (51=50-0) Jdny...dn,=0.

This is the same result as a direct computation of E*(Z).

REMARK. Let Z be given as in Theorem 3.1. For x&C(T), let X(z)=z(t)=
¢cR!, then E*(Z|X)(£)=¢&/2. Thus the result that J. Yeh obtained in [4,
Example 1, p. 629] is a special case of Theorem 3.1 with n=1. And also let
X(2)=(z(s), (&)= & ERE then E*(Z|X) (y, &) =n/2+ (t—5)§/(20). It is
clear that lign E¥(Z|X) (0, &) :lir{l Ev(Z|X)(n &) =¢&/2.

THEOREM 3.2. For z=C(T), let X(x)=(z(sp),...,2(s,)) and Z(x)=
g 1/ (si—si-1)) j( . _)x(u) dmy () where 0=59<s1<...<s,=t. Then the cond-
itional Wiener integral‘of Z given X 1is

n—1]
E*(Z1X) (1, oo M) =Z 7i+7a./2

where x(s;)) =n; for i=0,1,...,n.
Proof. It is obvious that E¥(Z]|X) exists. By Proposition 3.2 and our Z and

X, a version of E¥(Z|X) an)i{ is given by

(3.10) E*(Z)X) (oo o) "G5 Gt o )
=, Jim, I G o e o) B Y i)

Ln—l.s,)x (wydmy, () ].
Let

IF=E= (T 00 T @), o 2(50)) (1 (5= 5100))

J (S,_le)xﬁt) dmy(w)]
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for i=1,2,...,n. Then by (3.8) and (3.2), we have
(3.11) lim I*

(r1g e, rg)=(0, -, 0)
n -1 n
= (Gt 2 {@0* | im0 | Fexp{(=1/2) £ =107 si=s1-0)
for i=1, 2, ..., n. Substituting (3.11) for the right-hand side of (3.10), we
obtain
B Z1X) Gty o 1) G55t e 70
” ” -
=& { et iz {@or | (i-sin}

i=] i=1

exp{(~1/2) & (=107 Gi—s:-.
Therefore we have the desired result by (3.9).

Finally we evaluate conditional Wiener integral E®(Z|X) of a real valued
Wiener integrable functional Z defined by Z (X) =f[0 I (x(u))? dmy (u) condition-
ed by X as in Theorem 3.1 and Theorem 3.2.

THEOREM 3.3. For z&C(T), let X(x)=(x(s1), ..., x(s,)) and Z(zx)=
j[o a (x(w))? dmyp () where 0=s5¢<51<_...<sp,=t. Then the conditional Wiener
intégral of Z given X is

E®(Z1X) Oy oo 1) = (1/6) 3} (55— s50-0)
{(si—si0) + 22+ iyt 0D}
where x(s;) =v; for i=0,1, ...n.

Proof. It is trivial that E¥*(Z|X) exists. By Proposition 3.2, a version of
E»(Z|X) ZPX is given by

my,

(1D E@IX) Gy 1) Gk (an) =5 lim K,

71y F )= (0, 5 0)

where K;=E%"[J 8]1’, : ;”‘3 (x(s1), .., x(s,,))f_s._lys_] (x())? dmp(@)] for our Z
and X. Thus by (2.5) and (3.7) we have
Y

K= (12 { @) [1 (i=si0)}
.19) [ [w=sic0) (5= i 51-0) 7]
{[x.  exo{(-1/2F (=¥ (i=si-0) }dar...des) dms @)

where 0= ((si—w a1+ @—si_Da)/(s;i—si-). By (3.12), (3.13), (3.2), and
(3.9), the Theorem 3.3 follows.

REMARK. Let X(x)=z(@)=£&€R?! for z€C(T) and Z be given as in Theorem
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3.3. Then E¥(Z|X) (&) =t>/6+1t£%?/3. This shows that Theorem 3.3 is an
extension of {4, Example 2, p.631].
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