CLOSED IDEALS IN A SEMIFINITE, INFINITE VON NEUMANN ALGEBRA, ARISING FROM RELATIVE RANKS OF ITS ELEMENTS

SA GE LEE, SANG MOON KIM AND DONG PYO CHI

1. Introduction

Throughout the paper let A be a semifinite, infinite von Neumann algebra acting on a Hilbert space H, α an infinite cardinal. The main purpose of our work is to give several characterizations of a class of closed ideals in A, by introducing the notions of relative ranks of elements in A and the relative α -topology on H. The relative α -topology is an analogue to the α -topology that we have defined in ([7], [8]). The present work is regrded as an extension of [7], [8] and motivated by works of M. Breuer ([1], [2]), V. Kaftal ([5], [6]) and M. G. Sonis [9].

2. Relative rank and ideals

DEFINITION 1. A projection e in a semifinite, infinite von Neumann algebra A is said to have the relative rank α , with respect to A, where α is an infinite cardinal, if the following holds: There is a family $\{e_i\}_{i\in I}$ of mutually orthogonal nonzero finite projections in A such that $e=\sum_{i\in I}e_i$, $\operatorname{card}(I)=\alpha$, where $\operatorname{card}(I)$ denotes the cardinality of I. In this situation, the relative rank of e with respect to A is defined to be α and denoted by $\operatorname{rank}_A(e)$ or simply $\operatorname{rank}(e)$.

By (p. 252 [3] Lemma 6), it is clear that $\operatorname{rank}(e)$ is well defined independent of the choice of expressions $\sum_{i \in I} e_i$ of e in Definition 1, and that $\operatorname{rank}(e) = \operatorname{rank}(f)$ whenever e and f are equivalent projections in A. Also one can easily show that $\operatorname{rank}(e) \leq \operatorname{rank}(f)$, if $e \prec f$, $e, f \in P$.

DEFINITION 2. For $x \in A$, let l(x) denote the left support of x in A, that is the range projection of x in A. The relative rank of x denoted by $\operatorname{rank}_A(x)$ or simply by $\operatorname{rank}(x)$ is defined to be just $\operatorname{rank}(l(x))$, provided that l(x) has the relative rank of infinite cardinality. When l(x) is finite, we write $\operatorname{rank}(x) < \aleph_0$.

Note that for any $x \in A$, we always have $\operatorname{rank}(x) \leq \dim(H)$. Throughout the

This work was supported by a grant from Ministry of Education, Korea, ED83-103.

work, let Γ denote the set of all infinite cardinals α such that $\alpha = \operatorname{rank}(z)$ for some element $z \in A$ that has the infinite relative rank.

DEFINITION 3. For every $\alpha \in \Gamma$, we define $I_{\alpha} = \{x \in A : \operatorname{rank}(x) < \alpha\}$ and $J_{\alpha} = \overline{I}_{\alpha}$, the norm closure of I_{α} in A.

PROPOSITION 1. For every $\alpha \in \Gamma$, the set I_{α} is a two sided ideal in A.

Proof. For $x \in I_{\alpha}$, $y \in A$, we note that $\operatorname{range}(xy) \subset \operatorname{range}(x)$, so that $xy \in I_{\alpha}$. Let l(x) denote the left support of x in A. Then, $l(x) \sim l(x^*)$ in A ([10] p. 94 Theorem 4.3). By the remark following Definition 1, we can deduce that $\operatorname{rank} l(x^*) = \operatorname{rank} l(x)$ ($\leq \alpha$). It follows that $x^* \in I_{\alpha}$, whenever $x \in I$. For $x, y \in I$, we note that $\overline{\operatorname{range}(x+y)} \subset \overline{\operatorname{range}(x)} \vee \overline{\operatorname{range}(y)}$. Let e, f be the left supports of x, y respectively. It suffices to show that $e \vee f \in I_{\alpha}$. To the third of the next equations, we applied the parallelogram law; $e \vee f - f \sim e - e \wedge f$.

$$\begin{aligned}
\operatorname{rank}(e \bigvee f) &= \operatorname{rank}(f + (e \bigvee f - f)) \\
&= \operatorname{rank} f + \operatorname{rank}(e \bigvee f - f) \\
&= \operatorname{rank} f + \operatorname{rank}(e - (e \bigwedge f)) \\
&\leq \operatorname{rank} f + \operatorname{rank} e \\
&< \alpha,
\end{aligned}$$

since α is an infinite cardinal, rank(e) $< \alpha$ and rank(f) $< \alpha$. It follows that $e \lor f \in I_{\alpha}$ and that $x + y \in I_{\alpha}$.

3. Characterization of the closed ideals J_{α} , $\alpha \in \Gamma$.

The following lemma is a strengthening of a result of R.G. Douglas ([4] p. 413, Theorem 1).

LEMMA 1. Let a and b be bounded operators on a Hilbert space H. The following statements are equivalent:

- (1) $range(a) \subset range(b)$;
- (2) $aa^* \le \lambda^2 bb^*$ for some $\lambda \ge 0$; and
- (3) there is a bounded operator c on H so that a=bc.

Moreover, if any one of (1), (2) and (3) are valid, then there exists a unique operator c so that

- (a) $||c||^2 = \inf \{ \mu : aa^* \le \mu bb^* \}$
- (b) null(a) = null(c); and
- (c) range (c) $\subset \overline{\text{range}(b^*)}$. This unique operator c lies in the von Neumann algebra generated by a and b.

Proof. Let R=R(a,b) be the von Neumann algebra generated by a and b. If one examines the original proof of ([4] p. 413, Theorem), especially that for $(2) \rightarrow (3)$ ([4] p. 414), the unique c is defined as follows.

First define d by $d(b^*\xi) = a^*\xi$, for every $\xi \in H$ and $d(b^*(H)^{\perp}) = 0$, through

the obvious extension as a bounded operator on H. We then put $c=d^*$. By using the double commutant theorem ([10] p.69, Corollary 3.3), we would like to show that $c \in R$.

For every $t \in R(a, b)$ and every $\xi \in H$, we have

$$tdb^*\xi = ta^*\xi,$$

$$dtb^*\xi = db^*t\xi = a^*t\xi = ta^*\xi$$

Consequently, $td(b^*\xi) = dt(b^*\xi)$. Hence, $(td) | \overline{b^*(H)} = (dt) | \overline{b^*(H)}$. Now let $\eta \in B^*(H)$. By the way that d was defined in the Douglas paper ([4] p.414), we see that $d\eta = 0$. On the other hand, $t(b^*(H)) = b^*(t(H)) \subset b^*(H)$, $(t^*(b^*(H))) = b^*(t^*(H)) \subset b^*(H)$. Consequently, both $\overline{b^*(H)}$ and $b^*(H)^{\perp}$ are invariant under t. It follows that $t\eta \in b^*(H)^{\perp}$ and that $dt\eta = 0 = td\eta$. This shows that $(td) | b^*(H)^{\perp} = (dt) | b^*(H)^{\perp}$. Consequently, dt = td for all $t \in R(a, b)'$. Hence $d \in R(a, b)'' = R$, as desired.

LEMMA 2. Let K and H be two Hilbert spaces. Let U be the set of all bounded operators from K into H which are bounded below. Then U is an open subset of the set B(K, H) of all bounded operators from K into H, with respect to the norm.

Proof. Let a be an arbitrary element of U. Let us put $b=a^*a$. Then b is an element of the set B(K) of all bounded operators from K into itself, and in fact b is also bounded below. This means that b is left invertible in B(K). Since b is selfadjoint it is in fact an invertible element in B(K). Since the set G of all invertible elements in B(K) is an open set with respect to the norm we can say that there is a norm open neighborhood V of b in G. Since $x \in B(K, H) \to x^*x \in B(K)$ is norm continuous, there is an open neighborhood W of a in B(K, H) such that whenever $c \in W$, $c^*c \in V$. Then c^*c and hence c is bounded below.

DEFINITION 4. Let A be a von Neumann algebra acting on a Hilbert space H. The relative α -topology T_{α} on H is defined as the locally convex topology on H generated by the set of all seminorms p_M of the form $x \in H \to \sup\{|(x, y)| : y \in M_1\}$, where M varies F_{α} and F_{α} is the set all nonzero closed subspaces of H each of whose range projections belongs to A, having relative rank $<\alpha$. M_1 denotes the unit ball of M. When A=B(H), the algebra of all bounded operators on H, we get the α -topology, by deleting "relative" in the above definition.

Throughout the paper, we fix a set S as the set of all T_{α} -neighborhoods s of 0 in H such that s is a finite intersection of sets $\{y \in H : p_M(y) < \varepsilon\}$, where M varies over F_{α} and ε varies over the set of all positive real numbers. Then S is a directed set with respect to the order $s \le t$, meaning $t \subset s$. The next theorem is regarded as an analogue to various parts of ([5], [7], [8]).

THEOREM 1. Let A be a semifinite von Neumann algebra and P the set of all projections in A. Assume that $\alpha \in \Gamma$. Then the following conditions are all equivalent.

- (i) $x \in J_a$
- (ii) If $q \in P$, $q(H) \subset x(H)$, then $rank(q) < \alpha$ (extended Calkin condition.)
- (iii) If $p \in P$ and x is bounded below on p(H), then $rank(p) < \alpha$.
- (iv) For every $\varepsilon > 0$, there is $p \in P$ such that $||xp|| \le \varepsilon$ and $rank(1-p) < \alpha$ (extended Rellich criterion.)
- (v) $x|H_1:H_1 \rightarrow H$ is continuous with respect to T_α on H and the norm on H where H_1 denotes the unit ball of H.
- (vi) For every norm bounded net $\{\xi_s : s \in S\}$ in H such that $\xi_s \to 0$ in T_α , we have $x\xi_s \to 0$ in norm.
- *Proof.* (i) \rightarrow (ii). Let $x \in J_{\alpha}$, and let $x \in P$, $q(H) \subset x(H)$. By Lemma 1, there is $y \in A$ such that q = xy. Since J_{α} is an ideal, $q \in J_{\alpha}$. Now, by the definition of J_{α} , we can find a sequence $q_n \in J_{\alpha}$ such that $||q q_n|| \to 0$. Then
- $||q|q(H)-q_n|q(H)|| \to 0$. By Lemma 2, the operator $q_n|q(H):q(H)\to H$ is bounded below for a suitably large n. Then q_nq has the kernel (I-q)(H) and has the closed range. On the other hand, $l(q_nq)\sim r(q_nq)$ in A, where $l(\cdot)$ and $r(\cdot)$ are the left and right supports respectively ([10]p. 94, Theorem 4.3). But $r(q_nq)=r(q)$. Consequently, $l(q_nq)\sim r(q)$ in A. It follows that $\operatorname{rank}(q)=\operatorname{rank}(q_nq)\leq \operatorname{rank}(q_nq)\leq \operatorname{rank}(q_nq)$ as desired.
- (ii) \rightarrow (iii) Let $p \in P$ and x be bounded below on p(H). Then $r(xp) \sim l(xp)$. We put l(xp) = q. Thus, $\operatorname{rank}(r(xp)) = \operatorname{rank}(q) < \alpha$. Since $\ker(xp) = \ker(p)$, we see that r(xp) = p, so $\operatorname{rank}(p) < \alpha$.
- (iii) \rightarrow (iv) We quote Lemma 2.5([5] p.451): Let $x \in A$, $\varepsilon > 0$ and $p_{\varepsilon} = E[0, \varepsilon)$, where E is the spectral measure of |a|. Then
 - (a) $||a\xi|| < \varepsilon ||\xi||$ for every $0 \neq \xi \in p_{\varepsilon}(H)$, once $p_{\varepsilon}(H) \neq (0)$,
 - (b) $||a\xi|| \ge \varepsilon ||\xi||$ for every $\xi \in (I-p_{\varepsilon})(H)$,
 - (c) $n(a) \le p_{\varepsilon}$, where n(a) denotes the kernel projection for a.
 - (d) $p_{\varepsilon}|a| = |a|p_{\varepsilon}$.

Now we assume (iii). Let $\varepsilon > 0$. We put $p = p_{\varepsilon}$ in the quoted lemma above. Since x is bounded below on (I-p)(H), we see that $I-p \in I_{\alpha}$ by (iii) and $||xp|| \le \varepsilon$ by (a) of the quoted lemma above.

- (iv) \rightarrow (i) Let $\varepsilon > 0$ be given arbitrarily. By (iv), there is $p \in P$ such that $||xp|| \le \varepsilon$ and $|I-p \in I_{\alpha}$. Since $||x-x(I-p)|| = ||xp|| \le \varepsilon$, for an arbitrary $\varepsilon > 0$, while $x(I-p) \in I_{\alpha}$, we see that $x \in \overline{I}_{\alpha} = J_{\alpha}$, as desired.
- (iv) \rightarrow (v). Let $x \in J_{\alpha}$. We may assume that $x \neq 0$. Note that $x^* \in J_{\alpha}$, since J_{α} is a closed ideal in the C^* -algebra A. By the chain of implications (i) \rightarrow (ii) \rightarrow (iii) \rightarrow (iv), which we already have shown, we conclude that (i) \rightarrow (iv).

Thus, by the extended Rellich criterion, (iv), for every $\varepsilon > 0$ there is an $M \in F_{\alpha}$ such that

$$||x^*|M^{\perp}|| < \frac{\varepsilon}{4}$$
, since $x^* \in J_{\alpha}$.

Let $N=M^{\perp}$. Let $\eta_0 \in H_1$ and

$$U_M(\eta_0) = \{ \eta \in H : \frac{\sup}{\xi \in \lceil x^*(M) \rceil_1} \mid (\eta - \eta_0, \xi) \mid <\delta \},$$

noticing $\operatorname{rank}(x^*(I-p)) \leq \operatorname{rank}(I-p) < \alpha$, where p is the projection in A whose range is N. Since the projection in A whose range is $\overline{x^*(M)}$ is exactly the range projection of $x^*(I-p)$, we see that $U_M(\eta_0)$ as defined above is an open neighborhood of η_0 with respect to T_α .

Now, for any $\eta \in U_M(\eta_0) \cap H_1$, we have

$$\begin{split} & ||x\eta - x\eta_0|| = \sup_{\zeta \in H_1} | \left(x(\eta - \eta_0), \ \zeta \right) | \\ & \leq \sup_{\zeta \in M_1} | \left(x(\eta - \eta_0), \ \zeta \right) | + \sup_{\zeta \in N_1} | \left(x(\eta - \eta_0), \zeta \right) | \\ & = \sup_{\zeta \in M_1} | \left(\eta - \eta_0, \ x^*\zeta \right) | + \sup_{\zeta \in N_1} | \left(x(\eta - \eta_0), \ \zeta \right) | \\ & = \sup_{\zeta \in M_1} | \left(\eta - \eta_0, \ x^*\zeta \right) | + \sup_{\zeta \in N_1} | \left(\eta - \eta_0, \ x^*\zeta \right) | \\ & = \sup_{\zeta \in M_1} | \left(\eta - \eta_0, \ x^*\zeta \right) | + ||\eta - \eta_0|| (\varepsilon/4) \\ & = \sup_{\zeta \in M_1} ||x^*|| | \left(\eta - \eta_0, \ (x^*\zeta) / ||x^*|| \right) | + 2(\varepsilon/4) \\ & \quad \text{(Note that } ||(x^*\zeta) / ||x^*|| || \leq 1.) \\ & \leq \sup_{\omega \in [x^*(M)]_1} ||x^*|| ||(\eta - \eta_0, \ \omega) | + (\varepsilon/2) \\ & < ||T|| \delta + \varepsilon/2. \end{split}$$

Now we may assume that $\delta < \varepsilon/(2||x||)$. Then the last term above $< \varepsilon$, as desired.

 $(v) \rightarrow (vi)$. This is clear.

(vi) \rightarrow (v). Assume contrarily that $T|H_1$ were discontinuous at $\xi \in H_1$. Then for some open ball $B(x\xi, \varepsilon)$ centered at $x\xi$ with radius $\varepsilon > 0$ in H, we have

$$x((s+\xi)\cap H_1) \not\subset B(x\xi,\varepsilon)$$
, frequently for $s\in S$.

Let $S_0 = \{s \in S : x((s+\xi) \cap H_1) \not\subset B(x\xi, \varepsilon)\}$. For every $s \in S_0$, we find $\xi_s \in (s+\xi) \cap H_1$ and for every $s \in S \sim S_0$, we put $\eta_s = \xi$. Then $\{\eta_s : s \in S\}$ is a norm bounded net in H such that $\eta_s \to \xi$ in T_α . If we put $\xi_s = \eta_s - \xi$, then $\xi_s \to 0$ in T_α while $\|x\xi_s\| = \|x\eta_s - x\xi\| \ge \varepsilon$, for all $s \in S_0$. That is, $\|x\xi_s\| \ge \varepsilon$ frequently for $s \in S$, contradicting to hypothesis (vi).

(v) \rightarrow (iii). Let us assume that (v) is valid. Suppose that (iii) does not hold. Then there is $p \in P$ such that $\delta \|\xi\| \le \|x\xi\|$ for all $\xi \in p(H)$ for some fixed $\delta > 0$ and that rank $p \ge \alpha$. We put K = p(H). We will construct a net $\{\xi_i : i \in I\}$ in K as follows. The index set I is just the family F_{α} . We can find a unit vector $\xi_i \in K$ such that x_i is orthogonal to p(i).

Since $\aleph_0 \le \alpha$, we clearly see that $K \ne \{0\}$. Let $q \in A$ be the projection whose

range is the closed subspace i of H. Let $q = \sum_{j \in J} q_j$, where each q_j is a nonzero finite projection in A and $\operatorname{card}(J) < \alpha$. Clearly $p(i) \subset K$. We claim that $p(i) \subset K$. Let l(p(i)) denote the projection whose range is p(i). Thus l(p(i)) is just the left support l(pq) of pq. Then $l(p(i)) = p - p \wedge (I - q)$ ([10] p. 59, E. 2.3.). We claim that $p - p \wedge (I - q) \leq p$. Assume contrarily that $p - p \wedge (I - q) = p$. Then l(p(i)) = p, so rank $l(p(i)) = \operatorname{rank} p \geq \alpha$. On the other hand rank $l(p(i)) = \operatorname{rank} (p - p \wedge (I - q)) = \operatorname{rank} (q - (I - p) \wedge q)$ ([10] p. 94. Use Corollary 4.4 (ii), the parallelogram law: $p - p \wedge (I - q) \sim q - (I - p) \wedge q \leq \operatorname{rank} q < \alpha$, recalling q is the projection whose range is i, while $i \in F_\alpha$. This is a contradiction. It follows that $l(p(i)) \leq p$. Hence we can find a unit vector $\xi_i \in K\theta p(i)$.

Now for an arbitary $M \in F_{\alpha}$, we put $i_0 = M$. Then for every $i \ge i_0$ (meaning $i \supset i_0$), we see that

$$\sup_{\eta \in M_1} |\langle \xi_i, \eta \rangle| = \sup_{\eta \in M_1} |\langle p \xi_i, \eta \rangle|$$
$$= \sup_{\eta \in M_1} |\langle \xi_i, p \eta \rangle| = 0,$$

since $\xi_i \perp p(i)$ while $p(i) \supset p(i_0)$ and $M_1 \subset M = i_0$. It follows that $\xi_i \to 0$ in T_α . Since $\{\xi_i\} \subset H_1$, our hypothesis (v) implies that $||x\xi_i|| \to 0$. Since $0 < \delta \le ||x\xi||$, for all $\xi \in K_1$, while $\xi_i \in K_1$ we get the contradiction. We thus have shown that $(v) \to (iii)$.

Reference

- M. Breuer, Fredholm theories in von Neumann algebras I, Math. Ann. 178 (1968), 243-254.
- 2. ____ Fredholm theories in von Neumann algebras II, Math. Ann. 180 (1969), 313-325.
- 3. J. Dixmier, Von Neumann algebras. (English translation) North-Holland Publishing Co. 1981.
- R. G. Douglas, On majorization factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
- V. Kaftal, On the theory of compact operators in von Neumann algebras I, Indiana Univ. Math. J. 26 (1977), 447-457.
- 6. _____ On the theory of compact operators in von Neumann algebras II, Indiana Univ. Math. J. 79 (1978), 129-137.
- S. G. Lee, I. H. Lee, S. M. Kim and D. P. Chi, A characterization of closed ideals in L(H), Proc. Coll. Natur. Sci., SNU. 8 (1983), 5-8.
- 8. S.G. Lee, A general Calkin representation, J. Korean Math. Soc. 20 (1983), 61-65.
- M. G. Sonis, On a class of operators in von Neumann algebras with Segal measure on the projectors, Math. USSR Sbornik 13 (1971), 344-359.

10. S. Stratila and L. Zsido, Lectures on von Neumann algebras, Abacus Press, 1979.

Seoul National University Seoul 151, Korea