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CLOSED IDEALS IN A SEMIFINITE, INFINITE VON
NEUMANN ALGEBRA, ARISING FROM RELATIVE
RANKS OF ITS ELEMENTS

SAa GE Leg, Sanc Moon KiM AND DoNG Pyo Chil

1. Introduction

Throughout the paper let A be a semifinite, infinite von Neumann algebra
acting on a Hilbert space H, a an infinite cardinal. The main purpose of our
work is to give several characterizations of a class of closed ideals in A, by
introducing the notions of relative ranks of elements in A and the relative a-
topology on H. The relative a-topology is an analogue to the a-topology that

we have defined in ([7], [8]). The present work is regrded as an extension of
[7], [8] and motivated by works of M. Breuer ([1], [2]), V. Kaftal ([5],
[6]) and M.G. Sonis [9].

2. Relative rank and ideals

DEFINITION 1. A projection e in a semifinite, infinite von Neumann algebra
A is said to have the relative rank «, with respect to A, where a is an infinite
cardinal, if the following holds: There is a family {e;},;z; of mutually orthogonal
nonzero finite projections in A such that e=§ e, card{(])=a, where card(l)

denotes the cardinality of I. In this situation, the relative rank of e with respect
to A is defined to be @ and denoted by ranka(e) or simply rank(e).

By (p.252 [3] Lemma 6), it isclear that rank(e) is well defined independent
of the choice of expressions ge; of ¢ in Definition 1, and that rank(e) =rank

(f) whenever ¢ and f are eciuivalent projections in A. Also one can easily show
that rank(e) <rank(f), if e < f, e, fEP.

DEFINITION 2. For 2€ A, let I(x) denote the left support of = in A, that is
the range projection of x in A. The relative rank of x denoted by ranka(z) or
simply by rank(z) is defined to be just rank(I(zx)), provided that I(z) has the
relative rank of infinite cardinality. When I(x) is finite, we write rank (x) <.

Note that for any x€ A, we always have rank(z) <dim(H). Throughout the
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work, let I” denote the set of all infinite cardinals @ such that a=rank(z) for
some element z(€ A) that has the infinite relative rank.

DEerFINITION 3. For every acl’, we define I,={r€A: rank(z)<a} and J,=
I, the norm closure of I, in A.

PROPOSITION 1. For every a1, the set I, is a two sided ideal in A.

Proof. For z€l,, y= A, we note that range(zy) Crange(z), so that zyel,.
Let [(x) denote the left support of z in A. Then, I{z)~I(z*) in A ([10] p. %4
Theorem 4.3). By the remark following Definition 1, we can deduce that rank
1(z*) =rank I(z) (<a). It follows that z¥*€1,, whenever r&l. For z, y&I, we
note that range(z+ v) C range(z) V range(y)- Let e, f be the left supports of
z,y respectively. It suffices to show that e\/f&€I,. To the third of the next
equations, we applied the parallelogram law; e\/f—f~e—e/\f.

rank (e\V/f) =rank (f+ (e\Vf—f))
=rank f+rank(e\/f—f)
=rank f+rank(e—(e/\f))
<rank f+rank e
<a,
since @ is an infinite cardinal, rank(e¢)<la and rank(f)<a. It follows that
e\ f€l, and that z+vyel,.

3. Characterization of the closed ideals J,, a</r'.

The following lemma is a strengthening of a result of R.G. Douglas ([4] p.
413, Theorem 1).

LEMMA 1. Let a and b be bounded operators on a Hilbert space H. The follo-
wing statements are equivalent:

(1) range(a) Crange(d);

(2) aa*<A%bb* for some A=>0(; and

(3) there is a bounded operator ¢ on H so that a=bc.
Moreover, if any one of (1), (2) and (3) are valid, then there exists a unique
operator ¢ so that

(a) llellP=inf{x : aa*< ubb*)}

(b) null(a) =null(c); and

(c) range(c) Crange(5*). This unique operator ¢ lies in the von Neuwmann
algebra generated by a and b.

Proof. Let R=R(a,b) be the von Neumann algebra generated by a and b. If
one examines the original proof of ([4] p.413, Theorem), especially that for
(2) — (3) ([4] p. 414), the unique ¢ is defined as follows.

First define d by d(#*E) =a*&, for every €€ H and d*(H)*)=0, through
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the obvious extension as a bounded operator on H. We then put c=d*. By using
the double commutant theorem ([10] p.69, Corollary 3.3), we would like to
show that c€R.

For every t€R(a,b) and every §€H, we have

tdb*&E =ta*¢,
dtb*é=db*té = a*tE =ta*é

Consequently, td(b*¢) =dt(b*¢). Hence, (d)|5¥(H)=(dt)16¥(H). Now let
7€ B*(H). By the way that d was defined in the Douglas paper ([4] p.414),
we see that dp=0. On the other hand, ¢ (6* (H)) =56*(¢(H)) Cb*(H), (t*(p*(H))
=b*(t*(H)) cb*(H). Consequently, both F*(H) and 6*(H)* are invariant
under z. It follows that tp€d*(H)* and that dryp=0=tdy. This shows that (¢d)
|6 (H)t=(dt) |6*(H)*. Consequently, dt=td for all t€R(a,b)’. Hence dER
(a,8)"' =R, as desired.

LEMMA 2. Let K and H be two Hilbert spaces. Let U be the set of all bounded
operators from K into H which are bounded below. Then U is an open subset
of the set B(K, H) of all bounded operators from K into H, with respect to the

norm.

Proof. Let a be an arbitrary element of U. Let us put 4=a*a. Then & is an
element of the set B(K) of all bounded operators from K into itself, and in fact
b is also bounded below. This means that & it left invertible in B(K). Since &
is selfadjoint it is in fact an invertible element in B(K). Since the set G of all
invertible elements in B(X) is an open set with respect to the norm we can
say that there is a norm open neighborhood V of & in G. Since z€B(K, H) —
z*z€B(K) is norm continuous, there is an open neighborhood W of a in
B(XK, H) such that whenever c€ W, ¢*c&V. Then c¢*c and hence ¢ is bounded
below.

DEFINITION 4. Let A be a von Neumann algebra acting on a Hilbert space H.
The relative a-topology T, on H is defined as the locally convex topology on
H generated by the set of all seminorms gy of the form z€H — supf|(x, )| :
y&M,}, where M varies F, and F, is the set all nonzero closed subspaces of H
each of whose range projections belongs to A, having relative rank<la. M,
denotes the unit ball of M. When A=B(H), the algebra of all bounded
operators on H, we get the a-topology, by deleting “relative” in the above
definition.

Throughout the paper, we fix a set S as the set of all T,—neighborhoods s of 0
in H such that s is a finite intersection of sets {yeH : pp(y)<e}, where M
varies over F, and ¢ varies over the set of all positive real numbers. Then S is
a directed set with respect to the order s<¢, meaning tCs. The next theorem
is regarded as an analogue to various parts of ([5], [7], [8]).
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THEOREM 1. Let A be a semifinite von Neumann algebra and P the set of all .
projections in A. Assume that «EI'. Then the following conditions are all
equivalent.

(i) z€d,

(ii) If qeP, q(H)Cx(H), then rank(q) <a (extended Calkin condition.)

(iii) If pEP and xis bounded below on p(H), then rank(p)<a.

(iv) For every €>0, there is p& P such that ||xpl|<c and rank(1—p)<a (exten-
ded Rellich criterion.)

(v) z|H,: Hi— H is continuous with respect to T,on H and the norm on H
where H, denotes the unit ball of H.

(vi) For every norm bounded net {&,:s€S} in H such that £&,— 0 in T,, we
have &, — 0 in norm.

Proof. (i) — (ii). Let z&€J,, and let z€P, g(H)cz(H). By Lemma 1,
there is y€ A such that g=xzy. Since J, is an ideal, g&J,. Now, by the
definition of J, we can find a sequence ¢,&J, such that |lg—g,|| — 0. Then

lglg(H) —g,lq(H)||— 0. By Lemma 2, the operator g,|q(H) : q(H) > H is
bounded below for a suitably large ». Then ¢,g has the kernel (I—gq) () and
has the closed range. On the other hand, I{g.g)~r(g.g) in A, where [(-) and
r(+) are the left and right supports respectively ([10]p. 94, Theorem 4.3). But
r(gqq) =r(g). Consequently, I{g,q)~r(g) in A. It follows that rank(g) =rank
(g.9) <rank ¢,<a, as desired.

(i1) — (iii) Let pe P and x be bounded below on p(H). Then r(zp) ~I(zp).
We put {(zp) =q. Thus, rank(r(zp))=rank(q)<{a. Since ker(xp)=ker(p), we
see that r{(zp) =p, so rank (p)<la.

(iil) — (iv) We quote Lemma 2.5([5] p.451) : Let x€A, ¢>0 and p,=E[0,
¢), where E is the spectral measure of |a|. Then

(@) llat||<ell¢l| for every 0#é€p.(H), once p.(H)#(0),

(b) lla&l|=elléll for every é€ (I—po) (H),

() n(a) <p., where n(a) denotes the kernel projection for a.

(@) pelal=lalpe

Now we assume (iii). Let e>0. We put p=p, in the quoted lemma above.
Since z is bounded below on (J—p) (H), we see that I—p&l, by (iii) and
llzpll<e by (a) of the quoted lemma above.

(iv) = (i) Let >0 be given arbitrarily. By (iv), there is p&P such that
llzpll<e and I—pe&l,. Since |lz—x(I—p)| =llzpl|<e, for an arbitrary >0,
while x(I—p) €I, we see that z€I,=J,, as desired.

(iv) — (v). Let z€J,. We may assume that x#0. Note that 2¥&J,, since J,
is a closed ideal in the C*-algebra A. By the chain of implications (i) — (i)
— (iii) — (iv), which we already have shown, we conclude that (i) — (iv).



Closed ideals in a semifinite, infinite von Neumann algebra 111

Thus, by the extended Rellich criterion, (iv), for every £>0 there is an Me
F, such that

llz* | M| <, since z*EJe
Let N=M*. Let p,=H, and

Un() = (1€ H : oy | 0= §) 1<),

noticing rank(z*(I—p)) <rank(I—p)<la, where p is the projection in A
whose range is N. Since the projection in A whose range is z*(M) is exactly
the range projection of z*(I—p), we see that Us(n) as defined above is an
open neighborhood of 7, with respect to T,.

Now, for any 7€ Uy () N H;, we have

len—xvoH:%ggll (x(n—m0), O

Scsghll)ll (x(—70), O H?S,?,I (x(7—710), D) |
=sup| (7—70, x*C)I+gg}gi(x(n—ﬂo), Ol
=sup | (p—m0, 2*0) I+§ggl (770, =*O |
=sup| (7=, &*0) |+ Il7—00ll (c/4)
=supllz*|l| (=m0, (*0)/ll2*(]) [ +2(e/4)

(Note that ||(z*0) /llz*|i [|<1.)
<Tsup |lz*|ll| (=70 )|+ (e/2)

wclz*(M)]1

<||Til6+¢/2.
Now we may assume that < e/ (2l|z]]). Then the last term above <¢, as desired.
(v) = (vi). This is clear.
(vi) = (v). Assume contrarily that 7'|H; were discontinuous at §€Hj. Then
for some open ball B(z&,¢) centered at 26 with radius >0 in H, we have

z((s+& NH) ZB(a&,¢), frequently for s&S.

Let So={s€8 : z((s+&) NH) ZB(x§, ¢)}. For every s&S,, we find &€ (s+§)
N H; and for every s€S~S;, we put 7,=&. Then {7, :s€S} is a norm bounded
net in H such that 7, — ¢ in T, If we put &,=7,—¢&, then & — 0 in T, while
llzg,||=llzn,—x&l|=¢, for all s&S, That is, [lz&l|=¢ frequently for sE€S,
contradicting to hypothesis (vi).

(v) — (iii). Let us assume that (v) is valid. Suppose that (iii) does not hold.
Then there is p& P such that d||l|<||z€|| for all é€p(H) for some fixed 9>0
and that rank p>a. We put K=p(H). We will construct a net {§:4€Il} in
K as follows. The index set I is just the family F,. We can find a unit vector
¢;€K such that z; is orthogonal to p(i).

Since Ry<a, we clearly see that K+ {0}. Let g€ A be the projection whose
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range is the closed subspace i of H. Let ¢g= E g;, where each ¢; is a nonzero
finite projection in A and card (J) <a. CIearly p()cK. We claim that p(z)C

K. Let I(p(i)) denote the projection whose range is p(i). Thus [(p(s)) is just
the left support I(pq) of pg. Then I(p(5)) =p—pA\U—gq) ([10] p.59, E. 2.3.).
We claim that p—pA{UI—q) Sp. Assume contrarily that p—pA(I—gq) =p. Then

L(p(D) =p, so rank I(p(5)) =rank p>a. On the other hand rank I(p(f)) =rank
(p—p/A\U—q)) =rank(g— (I-p) Ag) ([10] p.94. Use Corollary 4.4 (ii), the
parallelogram law: p—pA(I—gq)~g— (I—p) Ag<rank g<a, recalling ¢ is the
projection whose range is ¢, while {€F,. This is a contradiction. It follows
that 1(p(2)) gp. Hence we can find a unit vector &;€K6p(5).

Now for an arbitary MeF,, we put 7,=M. Then for every i>i, (meaning
i{Diy), we see that

sup| (&, 7) [ =sup| (p&; )|
7EML 7EM

since §; L p(i) while p()) Dp(ip) and M;CM=i,. It follows that & —0 in T,.
Since {¢} CH,, our hypothesis (v) implies that ||z&||—0. Since 00|24,
for all £€K;, while &EK, we get the contradiction. We thus have shown that

(v) - (iii).
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