A ROLE OF K-GROUPS IN THE CLASSIFICATION OF AF ALGEBRAS

SUNG JE CHO

1. Introduction

In recent years various functors on C^* -algebras have been introduced to the realm of C^* -algebras. Among them are the following. With techniques usually used in algebraic topology Brown-Douglas-Fillmore [1] created the extension group Ext (A) and they used it to solve various problems originated from operator theory. Then Pimsner-Popa-Voiculescu generalized these and they obtained more complete picture of Ext (Y;A). In addition there is the variant of K-theory for Banach algebras [7].

The K_0 -group of an AF algebras has been studied more extensively. These groups have the structure of the ordered "dimension group". This dimension group classifies AF algebras completely [4].

In this note we use the K_0 -group of the rather special class of AF algebras, the so-called UHF algebras to the classification problem. Our result says that for two UHF algebras A, and B, $K_0(A)$ and $K_0(B)$ are isomorphic if and only if there exist natural numbers n and m such that $M_n(A)$ and $M_m(B)$ are *-isomorphic. Our result is stronger than Elliot's earlier result (see [3], [4]). And we mention that our technique is more explicit and we do not use the order structure of K_0 -group. (i. e., dimension group)

2. Generalities

Let A be a C^* -algebra with unit. If there exists a sequence of finite-dimensional C^* -subalgebras A_n of A with the same unit such that

- (1) A_n is a C^* -subalgebra of A_{n+1} with the same unit
- $(2) A = \overline{\cup A_n}$

then we call A approximately finite-dimensional (AF) algebra. In particular, if all A_n 's are simple finite-dimensional C^* -algebras (i.e., one *-isomorphic to a full matrix algebra), then such an AF algebra is called uniformly hyperfinite (UHF). Let A be a UHF algebra with $A = \overline{\bigcup A_n}$. Let A_k be *-isomorphic to $n_k \times n_k$ matrix algebras over the complex numbers C (we will denote it by $M_{n_k}(C)$).

Let θ_k be the unital inclusion map from $M_{n_k}(\mathbb{C})$ into $M_{n_{k+1}}(\mathbb{C})$ via the

inclusion of A_n into A_{n+1} . Let $p_1, ..., p_{n_k}$ be mutually equivalent orthogonal projections in $M_{n_k}(\mathbb{C})$ such that $p_1 + ... + p_{n_k} = 1$. Then $\theta_k(p_1), ..., \theta_k(p_{n_k})$ are mutually equivalent projections, in $M_{n_{k+1}}(\mathbb{C})$. Let m denote the integral dimension of the projection $\theta_k(p_1)$ in $M_{n_{k+1}}(\mathbb{C})$. Then $n_k \times m = n_{k+1}$. Hence n_k divides n_{k+1} for all k. Thus A can be viewed as $A = \overline{\bigcup_k M_{n_k}(\mathbb{C})}$, where n_k divides n_{k+1} for all k.

We briefly describe the construction of K_0 -group of a general C^* -algebra A. Details can be found in [7]. Let $M_n(A)$ denote the set of $n \times n$ matrices of entries from A. Then it is easy to see that $M_n(A)$ is actually a C^* -algebra with the usual matrix addition, matrix multiplication and with the natural C^* -norm. Let $\operatorname{Proj}_n(A)$ be the set of all projections in $M_n(A)$. Then we have natural injections

$$\operatorname{Proj}_n(A) \to \operatorname{Proj}_{n+1}(A)$$

defined by $e \to e \oplus 0$. We define an equivalence relation on $\operatorname{Proj}_n(A)$ by letting $e \cong f$ if there is a unitary u in $M_n(A)$ such that $u^*eu = f$. Then it is easy to see that the inclusions respect this equivalence relation on $M_n(A)$. We denote $D_n(A)$ the set of equivalence classes. Then we have a system of sets

$$D_n(A) \to D_{n+1}(A)$$

for any e, f in $D_n(A)$ we define

$$e+f=(e\oplus 0)+(0\oplus f)$$

in $D_n(A)$.

Then it is routine to check that the inductive limit D(A) of $D_n(A)$ with the addition defined as above gives us a semi-group D(A). Finally the Grothendieck group for D(A) is called the K_0 -group $K_0(A)$. It is easy to see that $K_0(M_n(C)) \simeq \mathbb{Z}$, the integer group, and that the inclusion $i: M_n(C) \to M_{np}(C)$ induces $i_*: K_0(M_n(C)) \to K_0(M_{np}(C))$ and $i_*(1) = p$. It is not hard to see that K_0 is a covariant functor from the category of C^* -algebras to the category of abelian groups. We close this section with the following lemma.

LEMMA 1. Suppose that A is a C*-algebra and that $A_1, A_2, ...$ is an increasing sequence of C*-subalgebras with $A = \overline{\bigcup A_n}$. Then we have $K_0(A) \simeq \lim_{n \to \infty} K_0(A_n)$

Proof. See [6] for example.

3. Classifications

Throughout this section K will denote the compact ideal of the algebra of all bounded linear operators on a separable infinite-dimensional Hilbert space H. For a unital C^* -algebra A, $K \otimes A$ will denote the C^* -algebra of tensor product of K and A.

THEOREM. Let A and B be UHF algebras with $A = \overline{\bigcup M_{n_k}(\mathbb{C})}$ and $B = \overline{\bigcup M_{m_k}(\mathbb{C})}$. Then the following are equivalent:

- (i) $K \otimes A \simeq K \otimes B$
- (ii) $K_0(A) \simeq K_0(B)$
- (iii) There exist two natural numbers n' and n' such that

$$M_{n'}(A) \simeq M_{n''}(B)$$
.

Proof. (i) \rightarrow (ii). If e and f are projections in $K \otimes A$, we write $e \sim f$ if there is a partial isometry u in $K \otimes A$ such that $u^*u = e$ and $uu^* = f$. Then the relation " \sim " is an equivalence relation on $\text{Proj}(K \otimes A)$ and we denote by [e] the equivalence class. Then

$$S = \{ [e] | e \in \operatorname{Pro}(K \otimes A) \}$$

is an abelian semigroup with the addition [e]+[f]=[e'+f'], where $e\sim e'$, $f\sim f'$, and e'f'=0 (it is always possible to find such e' and f' in $\operatorname{Proj}(K\otimes A)$). Then it is well-known that the Grothendieck group of this semi-group S is the same as $K_0(A)$ (see [2], [3]). Now since $K\otimes A\simeq K\otimes B$, respective semi-groups are isomorphic, so are their K_0 -groups. Note that this argument applies to any unital C^* -algebra.

(ii) \rightarrow (iii) Let $a_k = n_{k+1}/n_k$ and $b_k = m_{k+1}/m_k$. Let $m(a_k)$ $(n) = a_k \times n$ for all $n \in \mathbb{N}$. By Lemma 1 and paragraphs preceding it, we see that $K_0(A) \simeq \lim_{\longrightarrow} (Z_k, m(a_k))$ and $K_0(B) \simeq \lim_{\longrightarrow} (Z_k, m(b_k))$, where $Z_k = \mathbb{Z}$ for all k. Let θ be the given isomorphism: $\lim_{\longrightarrow} (Z_k, m(a_k)) \to \lim_{\longrightarrow} (Z_k, m(b_k))$. Then there exists a smallest integer k_1 such that $\theta((1, 0, \ldots)) = (0, \ldots, d_1, 0, \ldots)$, where d_1 is nonzero integer in the k_1 -position. Then there is a smallest integer p_1 such that $\theta^{-1}((0, \ldots, 0, 1, 0, \ldots))$ is of the form $(0, \ldots, 0, e_1, 0, \ldots)$ where e_1 is in the p_1 -th position. Continuing this process we get a direct system of abelian groups

$$Z_{p_0} \rightarrow Z_{k_1} \rightarrow Z_{p_1} \rightarrow Z_{k_2} \rightarrow \dots$$

where the map $Z_{p_{i-1}} \to Z_{k_i}$ is the multiplication by d_i and the map $Z_{k_i} \to Z_{p_i}$ is the multiplication by e_i and $p_0=1$. Then we have

$$a_1 \times a_2 \times \cdots \times a_{n-1} = d_1 \times b_{k_1} \times \cdots \times b_{k_{n-1}} \times e_n$$
 for $n > 1$,

and

$$a_1 \times a_2 \times \cdots \times a_{n-1} \times d_n = d_1 \times b_{k_1} \times \cdots \times b_{k_{n-1}}$$
 for $n > 1$.

Let C be the UHF algebra corresponding to the sequence $\{b_{k_1}, b_{k_2}, ..., b_{k_n}\}_{n=1}^{\infty}$. Then by Glimm's theorem [5], $A \simeq M_{d_1}(C)$ and $B \simeq M_d(C)$, where $d_1 = b_1 \times ... \times b_{k_1-1}$. Let d = n' and $d_1 = n''$. Then $M_{n'}(A) \simeq M_{n''}(B)$. (iii) \rightarrow (i). Since $K \simeq M_{n'}(K)$ and $K \simeq M_{n''}(K)$, (iii) implies (i).

REMARK. It would be of some interest to prove that (iii) implies (i) directly.

References

1. L.G. Brown, R.G. Douglas, and P.A. Fillmore, Extensions of C*-algebras

- and K-homology, Ann. of Math. (2) 105 (1977), 265-324.
- J. Cuntz, K-theory for certain C*-algebras I, Ann. of Math. (2) 113 (19 81), 181-197.
- 3. E. Effros, Dimensions and C*-algebras, CBMS Regional Conf. Ser. Math. Amer. Math. Soc. 1981.
- 4. G. Elliott, On the classification of inductive limits of sequence of, semi-simple finite dimensional algebras, J. Alg. 38 (1976), 29-44.
- 5. J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.
- D. Handelman, K₀ of von Neumann algebras and AF C*-algebras, Quart.
 J. Math. Oxford (2), 29 (1978), 427-441.
- 7. J.L. Taylor, Banach algebras and topology, algebras and analysis, ed. by J.H. Williamson, Academic Press, N.Y., 1975.

Seoul National University Seoul 151, Korea