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FOURIER SERIES OF A STOCHASTIC PROCESS
Xt 0)el?,,,

JonG M1 CHoo

1. Introduction

Throughout this paper, (@, & P) is the underlying probability space and,
without otherwise mentioned, X(,0), t€R, is a complex valued stochastic
process of the second order, where w is an element of ©, that is

E|X (¢t w) |>=||X(¢, -)[2< oo for every &.
Suppose that X (¢, w) is measurable on RXQ and also suppose that

5
f NX (¢, +)l2dt< oo, for every finite a<lb.
In this case, X(¢,w) is of L*(a,8) as a function of ¢ almost surely.

DEFINITION 1.1. A stochastic process X(¢, @) which is continuous in # for
almost all w belongs to L?, , , if and only if for the set
Efe, X}={r: sup Xt +7, ) =X, ) 12<e},
for every ¢>0, there exists /=1I(¢) such that for every a<R,
(a,a-+) NE{e, X} % ¢.
DEFINITION 1.2, X(¢,w)€L? ,, if and only if for the set
(e, X)={e :sup[ X e v, - X0 DPdr<e),
for every ¢>0, there exists /=I(¢) such that for every a<R,
(a0, a+1) NS%He, X} # 6.
REMARK 1.1. It is known (6) that for a weakly stationary process, L2, 4».

and L%, , are the same class. For this property it is necessary and sufficient
that the covariance function is uniformly almost periodic.

In this paper, we find the Fourier series of X(¢,0)& L2, , ». and the Parseval
relation of X(¢,w)E€L? ,, In section 2, we investigate some basic properties of
X(t,0)EL% ;. In section 3, we show that the mean of X(z,w) €L ,. ;. exists
and in section 4, after showing the existence of Fourier exponents and Fourier
coefficients of X(t,0) L%, , we give the Parseval relation of X(¢, w) el? .,

For convenience we will denote X(¢,w) as X(¢) in what follows.
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2. Some basic properties of the class L? , ,.
We shall give some propositions of X () L%, , whose proofs are omitted.

PROPOSITION 2.1. Let X(2) L%, ,. Then
utl
sup [ "X (9 s o,
“ER u
PROPOSITION 2.2. Let X(t) L% 4.5 Then
sup [* X (6B ~X®) 2 —> 0 (as h—0).

Now we will introduce the notion of the normality of X(¢) €L? , ,. whlch is
similar to the normality of u.a.p. functions. This definition enables us to treat
X(t)eL?,.,. . as processes possessing this property.

DEFINITION 2.1. X(¢) is S?-normal if and only if given any countable infinite
set {A;} of real numbers, for every e>(, there exists infinite subset HC {#;} such
that for every pair h;, ;e H

u+1
sglyf CIX by - X (0 +hy) |2 <e

PROPOSITION 2.3. The following statements are equivalent.
(i) X(t) is S%*-normal.
(i) X)) €L%,4.5.
Proof. (i)=(i). Given {#} CR. TFor each k; there exist 7;€5%{¢/16, X]}
and 0<y;<I(=l(e/16)) such that A;=z;+7;. For each k; we consider only one

representation in this form. Let 7 be a limit point of the sequence of all 7;.
Choose 0 >0 such that, for |A] <24,

sup [ X (¢+h) ~ X (@) IPds< 5.

Define the set H of all A; for which y—d<ly;<y 9.
For every pair &;, he&H

sup | :“nx<¢+h,.) — X (¢ LR\t
=sup [N (61507 - X+t s
=sup [ :H][X(t—I-Tj—Tk'i-Tj—Tk) — X (®)|%ds
=sup [“YX(¢-+2— 20 — X+ 75— 70 %
<2 §21?J:+111X(t+r,-—1k) —X () |%dt
2 up [ NX W =X ey Pde
<e.
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(i) = (ii). Suppose that X(¢) L%, ,.

Take now an arbitrary real number #;. For %; there exists (az &) CR such
that b,—a,>2|h;| and (ay, b)) NS?{e, X} =¢. If we let h, be the center of (a,
;) then hy—h & (a5, b;) and therefore (hy—h;) &S2{e, X}. There exists (a3, b3)
CR such that b3—as>2(| k1] +|he|) and (a3, 63) NS2{e, X} =@. Let hy be the
center of (a3, &3). Then we have A3—h;, hs—hyS2{e, X}. For the same reason
as before we can take ky, ks, ...such that none of the numbers h;—h; belongs to
S%{e, X}. Thus for any pair 7,j

u+l
sup [“X (B~ X (e +-h) Pde>e.

It is a contradiction to the assumption that X(¢) is S*-normal. Thus we have
the conclusion.

PROPOSITION 2.4. (i) If X(2)&L2,, ;. then ¢-X(@)EL? ., for ceC.
() If X eL?, ., then | X(®)|? is a real valued s.a.p. function.

PROPOSITION 2.5. Let Xi(t), Xo(t)&L2, .5 Then
(Xi+Xo) O=X1@) + X (1) €L .

PROPOSITION 2.6. Let Xi(t), Xo(t) L2, 5 Then
X, X @O=(Xa@), Xao(8))
is a real valued s.a.p. function.

3. Fourier series

To construct Fourier series of X(¢) €L%,,.,,, first we show that the mean of
X(t)eL?.,., exists, next we give some propositions.

THEOREM 3.1. Let X(t)&L? , , Then there exists
1

at+T
lT.i.m. - ¥ X(t)dt, independent for a.

(For the integral, see I.I. Gikhman, and A.V. skorokhod, (3) page 185).

Proof. Since X(t) €L%,.,,, for every €>0, there exists L=I(e)>0 such that
(a, a+L)NS?*{e, X} #¢ for every ac<R.

Let 1=l [(x@a— [ X @l
Then for r&8%{;, X},
(< o] soa] |3 xoad 4 Trcoa]
=[[Ixo-xe+raia L] [ix@pa oL [Tix@ el
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1 L a+L, 1
LT+ ve]t+ B sup[ix o
<1V €+ 62"717 for some constants ¢, ca.
Therefore, for every ¢>0, there exists T,(e) such that for any T>T,(g)
T a+T
”—%—fﬂx@d ~3 " x@a
Let a=(v—1)T, v=1,2,...,n, then
11 (T 1 {+T
[ x0a-7 [ xOa#|<
Therefore, for any T >T,(e), we have
l_l_ T _ 1 nT
+[ xwa—L Vx| <.
Hence for Ty, T2>T,(e)
1 (T _ 1 (%
u T1 IO X(t)dt Tg IO X(t)dtu
o T _ 1_ nT,
. élWTTL X0 = b ["x@ar

S oa b [l

+H 1 J:TIX(t)dt— 1 f:szX(t)dt“

quT (2] Tz
<3e.

1<s, independent for a.

PROPOSITION 3.1. Let X(¢t)eL% ., Then there exists
. 1 (7T
o@=lim 5[ X(e+a), X©) dr.
T—oo T
(convergence of the above limit is uniform for u and independent for 7).

Proof. From Proposition 2.6. (X (¢t+u), X(¢)) is a real valued s.a.p. function
with respect to t. Let ¢, () =X (+u), X()).
Similarly in Theorem 3.1., we have

F[owa—f [ oma

T T t
<3, lea@—eut et 3 [ lou@ldtg [ 1 ou0) s
=5L+1+1; (say),
where 7&€5%{¢, X}. 7 does not depend on .
By the following relation
I¢u(t)_¢u(t+7)l
=[{X(t+u), X@))—<X@+r+u), X@+7))|
sIXE+w) =X +e+o)ll 1IXON+HIXE+r+w)] 1 X@) —XE+o)|
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we have
L= [ lou® —pu(t4o) lde
<{f[ X+ -x@rerwadt - 5[ Tixw et
[ e padt - (k[Tixw - xeropa)t
<L sup [ 1% 0 Xt v ipar - (LT sup [0 2
+{~H%rl—§§kpﬂﬂllX(t+r+u>llzdt} I qup (1% = X t+0) e}

<cz¥¢, for some constant c,.
And

+T
Ia=%fT+Tlsou(t) |dt
l o+ T

sTj IXEE0 | 1X (s
+L

<gsup[ "X @de
T

< ,13,— for some constant cj.

Similarly we have

Hence
)%f:% ) dt—%f:+Tgo,,(t) dt)
<leav'e +2¢3 %
Therefore for every e>0, there exists To="Ty(e) such that for every T>T(e),
T XY e

Ty does not depend on 7 and #. And using similar argument of Theorem 3. 1.,
we get

hmTf (X(t-+w), X(O>di=p ().
Convergence of left hand side is uniform for « and independent for 7.
PROPOSITION 3.2. Let X(¢) €L?, , , Then ¢(u) is a real valued s% a. p. function.

Proof. For every &R and for r&5%{¢, X},

+1
fl lp(w) —p(utc) |2du
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:J"l‘l-l
< 11_;”}?1{%]:“)((“;) ~X(uteto) e} ([ T1X @) e fdu

By propoistion 2. 1., this is not greater than

T i+l
¢, lim %IOL X (utt) — X (utr o) |2du dt

T—ro0

lim%IT(X(u+t)—X(u+r+t), X(t)>dt[2du
T~ro0 0

<cye, for some constant ¢4.
Therefore for z€S5%{¢, X}, belongs to

141
S'leve, oV={e s supf " lo@ —puto) 1<)

PROPOSITION 3.3. Let X(t)EL% ,.,. Then ¢(u) is non negative definite func-
tion.

i.e. (i) ¢(u) is continuous at u=0.
(i) 5 5 & (u—u) >0
Sfor all choices of finite subsets (w1, ..., %)

of u and n-tuples (&1, ..., &) of complex numbers.
Proof. (1) |o(u)—¢(0)|
lim %j: Kurt)—X®), X(t))dt[

T—o0

1
gcs{ls&pLHI]X(uﬁ-t) —-X() ||2dt}%—> 0 (as #—0), for some constant

Cs.
(i) 3 B ewe wi—w)
a a . T
=5 Blim e | @R mutn), §X@)dr
=1 1 (Ts
=lim 7| | Bexropd
=0.

REMARK 3.1. Form Proposition 3.3. (i), we have ¢() is uniformly continuous
and therefore ¢(u) is a real valued u.a.p. function (A.S. Besicovitch, (I)).

4. Parseval relation

After showing the existence of Fourier exponents and Fourier coefficients of
X(2yeL?.,.,, we shall give Parseval relation in the case of X(¢t)€L?, ..

PROPOSITION 4.1. Let X(t) € L%, ., Then there exists
{A.) CR and {r,} CR* such that

L 7a<oo, plu)= éfrne“""-
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Proof. Since ¢(u) is non negative definite, by using Bochner’s theorem
(H. Cramér, and H.R. Leadbetter, (2), page 126) there exists F(4) which is
real, nondecreasing, and bounded such that

o= HdF (.

Let 7(3) =F(A+0)—-F(3—0) for every Aef{i, A ...} =A
(it may be ¢) and for €4, r(A)=0. And

(=120, BrsF(e)—F(=o0) <o,
RO=Z7 ROEFO-R®).
Then we have
P =3 yacinet [ eMdF(D).
From the facts that p(x) is u.a.p. and

oa . )
21 7q€** is u.a. p.,

n=1
we have ¢z(u) =f°_° & dF,(2) is u.a.p. and therefore lpa() |2 is also u.a.p.
And then
T
lim 7 [ 12 1%du
T 3 L]
=lim & [ ([" [ duimaR, @ dFa (X)) du

T-+c0

=[7 F) ~Fd)dFo

=(.
From the above relation we get g.(2) =0. (A.S. Besicovitch, (I))
Therefore ¢ ()= i}lrne"‘n".

THEOREM 4.1. Let X(¢2) L% ...
—1 3 _1_. T =
For a)=Lim. [ X@®ear,

there exists A= {4} CR such that a(2) #0 for Aed and a(A)=0 for A&A.
Let a(A,) =a,, n=1,2,.... Then Parseval relation

lim [ 11X Pde=5, llanl® holds
T-s00 T 0 _~=1 " )
(We call the numbers Ay, A, ..., Fourier exponents and the numbers ay, aa ...,
Fourier coefficients of X () EL%.4.5.)-
Proof. From Proposition 4.1., we know there exist A={2,} and {r,}CR*
such that f}lr,<oo, o) =Z:7',,e"‘»“. Therefore we have
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Otherwise

Hence

Jong Mi Choo

hm Tf o (u) e~ Mdy
=lim Tf Z,‘ 76 Vs dy

T—~co

-—Z} Tn ]1m Tf &' n '”“du)

_{7‘,, 1f l €A, n=1,2, ...
“lo if aese.

T
lim %Jo o (u) e s dy

T—o0

=lim [ e {lim [ "X ute), X0)>de)du

T~s00

T-: _, S .
=limqLim. [ ewX@de, §[Ceix@an

T—oo
—Ha(ﬂ)llz-

”a(ln)|2:”an”2:rm 7121, 21
la(D?=0, for A4,

Therefore we have

PROPOSITION 4.2. Let X(t) €L% ., Let A={4,}, a, n=1,2,
exponents and corresponding Fourier coefficients in Proposition 4.2. Then

P ()= Jim [ [ 1X(0) P
=5 ra=5 la () P=5 la,li

tim Lim 7 [ " 1X(0) — 3} ape2de=0.

Proof. lim lim j 1X(0) — 3 ayet|ode

0o

=lim|lim 11X 2t 3} 1P
-0
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