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Rationale of the Maximum Entropy Probability Density

B.S. Choi*

ABSTRACT

If {X.) is a sequence of independent identically distributed normal random variables,
then the conditional probability density of Xi, Xj, +-+, Xa given the first p+1 sample
autocovariances converges to the maximum entropy probability density satisfying the
corresponding covariance constraints as the length of the sample sequence tends to
infinity. This establishes that the maximum entropy probability density and the
associated Gaussian autoregressive process arise naturally as the answers of conditional
limit problems.

1. Introduction.

Jaynes (1957, 1958, 1968, 1978, 1982) introduced the concept of the maximum entropy
of statistical mechanics into statistics, and proposed the Principle of Maximum Entropy
as follows. When we choose a p.d.f. under some constraints, we select one which has
the maximum entropy among p.d.f.’s satisfying the constraints. In other words, the
p.d.f. which maximizes the entropy Is identical to one which can be realized in the
greatest number of ways (Jaynes [1968, p. 231]). Jaynes' principle has been primarily
used to estimate spectral densities in time series analysis. For a brief review we assume
that a sequence of random variables (X, t=0, =1, 2, -} is a real-valued, regular,
stationary stochastic process which is measured at unit intervals of time. Without loss
of generality, we assume the process to have zero-mean. We define the autocovariance

function o(B)=E(X, X.,x) for k=0, 1, +2, -~ Since the process is real valued,
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o(—k)=c(k) for all k. The Fourier transform of the autocovariance function is defined

as the spectral density S.(2) :

S, (D===F s(hei,

27 152w

If we know the whole autcovariance function, we obtain the spectral density through
the definition. However, in practice, we usually do not know the entire autocovariance
function ¢(/), /=0, 1, 2, ---. If we have only a finite number of reliable autocovariances,
o(k)=ax for |k|<<p, we may be interested in procedures that estimate the spectral
density in a “natural” manner using only this partial information. The traditional
methods of estimating the spectral densities are to assume that o(k)=0 for |k|>p, to
give weights w(k) to (&) for |k|<Ip, and to take the Fourier transform of w(k)a(k).
We call the weight function w(#) the lag window. However, using a window is a
violation of a basic rule called the Principle of Data Reduction by Ables (1974),
which says, “The result of any transformation imposed on the experimental data shall
incorporate and be consistent with all relevant data and be maximally noncommittal
with regard to unavailable data.” The traditional methods in spectral analysis violate
this principle in two ways: the unavailable data are assumed and the available data are
distorted by windows. Thus, some scientists turned their attention to estimating spectral
densities in other ways. One of new methods, which was proposed by Burg(1967, 1968),
is based on the principle of maximum entropy as follows. Let {X.} be a stationary
(Gaussian) time series with the first p+1 autocovariances o(0)=as, (D) =ay, -,
o(p)=a,. Then the spectral density that maximizes the entropy (rate) of the process
is the same as that of an autoregressive process of order p with the same first p+1
autocovariances a,, @y, ***, a,. Since there are an infinite number of spectral densities
which satisfy the partial information ¢(k)=as for [k]<p, there must be an additional
criterion to choose one spectral density which is the representative of the class of all
possible spectral densities. Burg used it as the criterion that the maximum entropy
estimate is the most random, the most unpredictable among all possible estimates which
satisfy the given constraints. Ables (1974) has asserted that Burg’s method satisfies the
principle of data reduction, and so it is theoretically more reasonable than any of the
traditional methods. Also, Lacoss(1971) and Kaveh et. al. (1976) have shown that the
maximum entropy method gives a much higher resolution spectral estimate than any of

the traditional methods, particularly, when the data record is of short duration.
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Van Campenhout and Cover(1981) have presented a concrete meaning to the maximum
entropy p.d.f. by proposing a relation between maximum entropy p.d.f.’s and conditional
ones. The relation is that the conditional p.d.f. of X; given —711—21 X:#=0?, where X,
X,, ---, X. are i.i.d. (independent identically distributed) random variables with p.d.f.
g(x) satisfying certain regularity conditions, converges to a p.d.f. of the form fi(x)=
c(Dexp(—ix?) g(x), where 2 and ¢(i) are determined by the equations Sﬁ(x)dle
and szfx(x) dx=gc? as n—oc, Since a random variable X having the maximum entropy
subject to E(X?)=1/(22) is the normal random variable with p.d.f. (2/7)V? exp(—4ix?)
(see Kagan et. al. [1973, p.410]), the limiting p.d.f. f;(x) is the normalized product
of a maximum entropy p.d.f. and the initial p.d.f. g(x). Also, it is known that the
p.d.f. fi(x) minimizes the Kullback-Leibler(1951) information number of f relative to g,

oY= (%)
D(fi @) =[foin 55 dx,

among the p.d.f.’s satisfying szf(x)dxzaz, (Vincze [19727). The Kullback-Leibler

number is regarded as a good measure how much the p.d.f. g(x) is different from the

p.d.f. f(x) in the sense of statistical distinguishability. This idea is backed up by Stein’s
lemma (see, e.g., Csiszar and Korner [1981, p.28]) and Sanov’s theorem (1957). Thus
the limiting p.d.f fi(x) is the closest p.d.f., in the Kullback-Leibler sense, to the initial
p.d.f. g(x) among the p.d.f.’s f(x) satisfying szf(x)dx:oz. This kind of convergence
problem has been also studied by Darwin and Fowler (1922), Bartfai (1972), Lanford
(1973), Tjur (1974, pp.306-321), Zabell (1974), and Vasicek (1980).

It may be an interesting question what kind of the initial p.d.f. g(x) results in the
maximum entropy p.d.f. itself as the limiting p.d.f. fi(x), in other words, which is
the nearest p.d.f., in the Kullback-Leibler sense, to the maximum entropy p.d.f. subject
to £(X?) =0?, i.e., the normal p.d.f. with mean 0 and variance ¢% From the previous
lemma, we know that there are two candidates for the initial p.d.f. g(x). One is that
the initial p.d.f. g(x) itself is a normal p.d.f.. Then, the limiting p.d.f. fi(x) is the
maximum entropy p.d.f.. However, this case does not arcuse any interest to statisticians.
The other is that g(x) is uniform over (—occ, o). Then the limiting functinn f3(x)
does possibly become the maximum entropy p.d.f.. Unfortunately, the uniform function
over (—ce, co) is improper and does not satisfy the regularity conditions. To overcome
these deficiencies, we may define a double array of uniform random variables (Choi

[19841). More precisely, for each n>1, let Xi,., X;» *++, Xa» be a sequence of i.i.d.
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uniform random variables with p.d.f. gn(x):—271,—7— i evzrewm (%), Where ¢>0. Then
v

the conditional p.d.f. of X,,. given% éIXiz,n =¢? tends to the maximum entropy p.d.f.
satisfying E (X2 =¢? as n—oo,

Choi (1983) has generalized this result to a multivariate case as follows. The condi-
tional p.d.f.’s of the random vectors (Xi,», Xz, Xnn) given sample autocovariances
%—éle,nXJ,j,n:aj for 0<<j<{p, where {X,.;1<I<<w} is the sequence of i.i.d.
uniform random variables with p.d.f. g.(x), tend to the p.d.f. of the maximum
entropy random vector subject to the corresponding covariance constraints E(X: X)) =
ayi-; for |{—jl<<p, which is the random vector whose elements constitute a Gaussian
autoregressive (AR) process (Choi and Cover [1984]).

Based on these two results we can conjecture that the conditional p.d.f. of the random
vector (X, X,, ---, X.) given the sample covariances %l}; X Xi=a; for 0<<j<p,
where {X;;{=0,+1, +2, -~} is the sequence of i.i.d. normal random wvariables with
mean 0 and variance ¢?, tends to the p.d.f. of the maximum entropy random vector
subject to the covariance constraints E(X:X)=ea,..; for |i—j|<<p. This conjecture is
backed up by the lemma that the p.d.f. of the maximal entropy random vector satisfying
the conditions E(X:X,)=ay:_; for |i—j|<p is closest in the Kullback-Leibler sense to
the joint p.d.f. of the i.i.d. normal random variables among the p.d.f.’s satisfying
EX:X)=ai_; for |i—j|<p. (Its proof is in Appendix.)

In Section 2 some basic notions and lemmas coming in useful to prove the conjecture
will be presented. In Section 3 the conjecture will prove true. It will give a concrete
rationale to the maximum entropy probability density and Burg’s maximum entropy
spectral density. In Section 4 we will finish this paper by proposing a possible use of

the main theorem to the model modification in time series analysis.
2. Preliminaries.

We assume that {X,, X,, ---, X.} is a sequence of random variables with mean 0 and
covariances Cov(X:, X;))=0(—j) for 1<{i, j<<n. If we denote the covariance matrix of

the random vector {,.:(Xl, X;, -+, Xo)' by
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o(0) o(1)  (2)o(n—1)
(7(‘-‘1) 0‘(0) 0'(1) ...... o-cn_z)
2n= 0'(72) 0(—'1) 0(0) ...... U(”TED ,

o) o(22m) a(—m)  0(D)
then ¢(j)=0(—j) for all j and X. is positive definite (see, e.g., Box and Jenkins
1970, p.281).

Using Hawkins-Simon's lemma that a matrix is positive definite if and only if all
the leading principal minors are positive (see, e.g., Gantmacher {1959, bp. 306]), we
construct an autoregressive process from given autocovariance terms.

Lemma 2.1. !f the random vector X, has the first p+1 known covariances o(0) =
o, o(D)=ay, = c(p—1)=ar1, o(p)=as and if a;=a_; for all j, then the followings
are satisfied.

(i) The system of simultaneous equations Jilaj a;=—uay for I=1, 2, ---, p—1, p has a
unique solution @, @z, ***, G».

(ii) If @pity, Qpezy Apysy os ALE extrapolated from a,, @), @ -+, @» according to the
Yule-Walker equations : alz—jé a;ai; for l=p+1, p+2, ==, n—1, and if a Toeplitz

matrix A, and a positive number ¢? are defined by

( Qo oy Qgeeeeee n_n An_y

o1 o Cqreseee s Un_s

o o Clgereeer Q- Q-

A, =i %z -1 :0 " 4 " 3
La” JE R U S|
*Xi_n Ka_n g _noott* Xy [o 4

?
and ot=7Y a;a_; where go=1,
i=0
then | A.|=(g?)"?|A,| for n=p and A, is positive definite for all n.
Proof. (i) Since X, (i.e., A,) is positive definite, there exists a unique set of solutions

{a,, a as}.
(i) For r>p, we multiply the (r—p-+1)—th row of |A.y| by a,, its (r—p+2)—th

row by d@,_q, ++-, its 7-th row by a, and then add them to the last row. We then
obtain a formula

P
| Arei | =145 ><<Z a; a,j>, where a,=1.
i=0

In case of ¥=p, |A,,| is positive and so is | 4,| by Hawkins’ lemma. Consequently,
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i a;a_; is positive. If we define aZ:ZP a;a_;, then |A.|=(e®)"*|A,| for n>p. This
i=0

i=0

relation implies that | A,] is positive for all 7, i.e., A, is positive definite. Q.E.D.
Henceforth, we regard a,, ay, ---, @, as given numbers and Opiyy, Apya, **- aS numbers
extrapolated from a,, a;, ++-, a, by the Yule-Walker equations. From the autocovariance
function {as ; =0, £1, =2, -} we can construct a stationary autoregressive process as
follows.

Lemma 2.2. Let-, X_., X\, -, X,, X,, X;, -+, X., -, be a stationary normal
stochastic process with mean 0 and autocovariance function o(k)=a, for all £ If we
define a sequence -, V.., Vion, -+, V., Vo, Vi, =, V., ++-such that

Vi=Xita Xi i+a, Xe o+ - +a,° Xy, £=0, 1, +2, -, @D
then {V,} is the sequence of i.i.d. normal random variables with mean 0 and variance
o and X, is independent of V.., for I=1, 2, ---. Moreover, all roots of the polynomial

equation
P N
Zoaj 2= (2.2)

are less than 1 in absolute value.

Proof. The first part of this lemma can be proved in many ways, e.g., by use of the
Wold decomposition theorem, or by use of the Toeplitz matrix theory (Grandell et. al.
[19801), or spectrum techniques {Anderson [1971, p.407]). We shall prove this lemma
by the linear transformation method, which will be useful in proving subsequent results.

For any 7, s, gq(>=>p), (2.1) yields that

Xoor 7 ( X ‘}
X:+2 X5+2
. .

X:+q X5+q
V:+q+1 :Eqn XS+q+1 ’
V:+q+2 XS-HH—Z
VS+q+r—1 X:+q+r—1

- Vs+q+r - - -’Yx+q+r /

where E,, is
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- .W
I, 0 ) q rows
-~
O- 0 O Opute v ¢+ 0 [Gg O O =+ v v+ 00:--000 1
O...OO(;|p ..... 0265000 ....... 00 OOO
Eqr=° ..Qoo.....g's?:q-, ORRRRE OOOOO
grrows
6...666.....6000 ....... upupil' G‘OOO
0--*000-:++-0{0 00 O Op - -020 % |
\- I\ ~— —
q columns r columns

To calculate the covariance matrix FEq,r Agyr Eq.’, we first derive the lower triangular

part of E,,, A’ :

B ook Keoooon e * %]
;!:** ......... **.‘
A Dol D quows
q Lol Co
*i‘* --------- **./
E ;. = ;2*2* ......... * % | )
q.,r Tqrr 00 %-ovrnncns %* %
09 ......... * %
Q : . &rrows
~ a =
00 Onvvrmcnn F
i 0O OQrrvvrvmns o #)
\_'_V_'J —~ J

q columns r columns
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where it is not necessary to calculate the values of x, Then, we obtain the lower

triangular part of E,,, A, E,,. as

[~ IR TRE TR * %]
LI R TR * %
A I . &q rows
q Do s
:?_j K oo e * * 2
V4 ’ - b Mo o v s v v v v * *
EqrAq+rEqpr 0 e .
O O (?' ......... * *
0 : S 1) )rrows
e 2
O 0 Qcvvnnnne o &F
q columns r columns
The symmetry of E,,. A,.. E,,.” follows that of 4,,,. Thus,
Eor Ayer Egy = [Aq 0 ] .
0 ol
In summary, the random vector (Xesi, Xivz 4, Xovey Vivast, Viraszy = Visgsr)’ has

the multivariate normal distribution with mean 0 and covariance matrix

[Aq Q} for any s, 7, g(= p).
9 0'2 [r

Thus, {V.} is the sequence of i.i.d. normal random variables with mean 0 and variance
0% and X, is independent of Vi, for /=1, 2, «--. It is known that a stochastic process
{X.} that satisfies the stochastic difference equation (2.1), where {V.}is a sequence of
i.i.d. random variables and X, is independent of Viei, Vs, +++, Is stationary if and only
if all the roots of the polynomial equation (2.2) are less than 1 in absolute value
(Anderson [1971, p.256 and pp.166-1737). Q.E.D.

The next lemma is about the asymptotic normality of the -sample autocovariances.

The proof is based on Anderson and Rubin (1950).
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Lemma 2.3. Let {X.} be a regular stationary Gaussian stochastic process with mean 0
and autocovariance functions o(k)=as for all k. If we define Rn(j):%j);sz Xy, J=
0, 1, **+ p, then the random vector

(VALR(D)—a], vrl[R(D—ail, VA [R.(p)—a])

has a limiting normal distribution with mean 0 and covariance matrix 2=(w.), where

gt (* Ed co | 4
wgh:_n_s_”cos}lg cos A h \;:oajeXD(“MJN da.

Proof. First, we cite Anderson and Rubin’s theorem (1950, also refer to Theorem 8.4.2
of Anderson’s book [1971, p.478]):

“Let {Y.} be a stationary time series with mean 0, autocovariance function ¢(k) and

spectral density S,(1). Let R.(j) be %’12_1 Y, Y., for j=0, 1, 2, ==+, p. If Yicanbe
=1
written as V.= i 7.V..,, where {V.} consists of ii.d. random variables with E(V:)
s

~0, E(Vi)=0? and E(V.)=30'+r<oo, and 3 .| <oo, then 7 (Ra(0)—=a(0)),

VR (RAD—0(1)), - vu(R.(p)—0o(p)) have a limiting normal distribution with

means 0 and covariances

lim Cov(vu Ru(g), VHR() =47 (cos2g cos 1A S,2(D) da+ Ti-o(h)a(@).”

We know that all the roots of Equation (2.2) are less than 1 in absolute value by

Lemma 2.2. Then X; can be represented by

Xt:zgo 7. Vi, (2.3)
where the sequence {7} satisfies that
1=70
0=ao71~a170
0=ay 7t 71T G270
: (2.4)
0=y 7p-1+ 01 Tp-2T Tp-3t et as170
and
Ozdoy’g*CA T:-1+02Tt-2+"'+ap‘1Tl-p+1+ak Te-ps t}p (2 5)
If we let n, #,, ++-, #. be the roots of Equation (2.2) with multiplicities my, m, ==, 7

where 7<{p, then the difference equation (2.5) has the solution 7. :

7i= Z’ (B 4 b, E et B D) ity
=1
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where the coefficients 4% for [=1, 2, «-, m; and j=1, 2, ---, » are constants which
satisfy the initial conditions (2. 4), (see, e.g., Choi [1973]). Therefore, gol 7e] <oo, since
9l <1 for 1<<j<<r. Since the sequence {X,} of (2.3) satisfies the conditions of Anderson

and Rubin’s theorem and #,=0 by the normality of {V}, and since Lemma 2.2 implies
£

that the spectral density of the process {X,} is Sx(l):ZLj | 2 a;exp(—id) |2, V7 [R.
¥iA i=0

0 —aod, vZ[R.(D)—a,], - vu [R.(p)—a,] have a limiting normal distribution with
means 0 and covariances w,,, for 0<g, h<p. Q.E.D,
We define the following vectors: Xu= (X1, Xy *+oy Xn)’, Zon=(X1ony, Xoomy o, Xy, %),

Xny na+sp

1

Xon . . .
x‘”m,n,:[;c(z) J Also, we define the sample autocovariance function by

_ZZ:] X Xi,; for 0<j<n+n,~1,

N 1
Rn]’HZC'])_ Ny—7Hy 1 n
and Ra,n,(—j)=Rn,n(j) for all j. The next lemma plays an important role in
proving the main theorem.

Lemma 2.4. Define G(n,, #n, ; k) by
{FrmE R | Ry (D=l < for j=0, 1, 2, - b,
If %omisiop=0mprp= e =% 0, =x_,, =0, if Xnat1=Xnpy2 =" =%n,,,=0, and if Kniyms
€ G(ny, 1,5 1), then [ X isms Aniinares™ Xonpyma— (+1) | <(y+1,) Kh, where K is a

constant.
Proof. First, we will obtain A,~! for r=p. Define the matrix D, by
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ooo‘ °z""'°p-|°p\° [o 2 o IOEEEIIN O 0i{0 Q- 00 h
N
) 00\°q""'°p~2°p4°p0 0-+-++0 0|00 00
O O g - - -+ 0pa%z2i% O+ -0 00 O-- 0 0
- ; r-p rows
1 :
Dr"a' .o .
00 Oeene o 0
00 D0 1% J
S
1
Q oAp? p rows
L |
\ I J
r-p columns p-columns
A direct product of matrices D, and 4, yields
r, =)
T0 0 Ocr ve v vie v 00
* 0’20 O e veer e vnnneaeas 00
* % 02 02 ................. 00
,!‘ * - P R 0 O
: : L Q r-p rows
D. A 21 : Do
rr=o | : D
R K e e Fo
OB K e e s e e + o;
W oA M e e e e * % <
B W M Ao h e s e s & ok
: Do : 1
L oAp? D rows
_* A& * * ................. * %k )
AN VAN J -

r-p columns p columns



98 B.S. Choi

where the values of sk need not be calculated. By another direct product of matrices

D.A, and D,’, we obtain the upper triangular part of D, A, D, :

2 ]
A
*
N2
**U\
* xS
Do 0
SR BN
DfArDr'a’ Do 2
L T [ 3
I B *\02\2
L IR I DR R **q\
* k% % x % % X
,r*;r* ............... ***0\02
Bk K e e e, **;go'o\..gz
Kok K Ko e e * %k % QO Q\cg\
- J\__ JJ
r-p columns p columns

Since A, is symmetric, so is D, 4. D,’. Thus, D, A, D,’=I or A,"*=D.’ D,.
Second, we calculate D,y npess Xurymy

—

Q [
e

]

Qi Xjonie1-p

i=0

e

1
Z._ Oaixf—nn+2—i>

w
1]

Doiinay Xonpyn= M, +#,+p TOWS

bd
2 a; X
i=0

Q [

™o

It
o

1
¥ Qi Xnyrj

p rows

[}

L
where % ., =% ., 1=X_n,_p,= =%_n,;.»=0 and Kngg1=Xnzyo=*"*=Xn,s»=0.
Then,

’ -1
'fe nysng A nitnz42p Xnyyny

:(D"1+"z+2!> {eﬂn ﬂz)l (Dm+nz+21> ~xenlv "z)
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2 1 Fd 2
= 2 ($Ean)
1=mri-p\T j=0

1 r 2 nz
==X X a a;‘( P xl+ixl+i>

2
0% (=0i=0 1=-nitl-p
1 b P ng—|i-ji 1 —ny
=57 Y Y aia; 3 XiXii-q +—‘0 Z Z a; a; > X1 Xigri-iy
i=0j=0 l=i-n3 i=0j=0 I=-ny+1-p+minli, )

1 r 2 ﬂz-HMi(‘fw')
=y Y aia; X Xii-a X
i i=0 (=np+1

nz—1i-J|

1 p P
:-‘E‘Z Zaiaj E X1 Xiv1i-fl

= nl;nz Z Zaa.? ﬂunz(l ])

=0 j=0

The second to the last equality results from the zero assumptions. Moreover, the Yule-

Walker equations yield that

1 P P 1 k4 Fd 1 b4
;2—;’ goai a; i ;= —0—; (goajai-j):—o.__g a: 0% 01,0=1,
where the Kronecker delta function s 18 defined as

P 1 if a=b,
arb— .
{0 otherwise.

Thus, if Xu,n, € G(ny, ny ;5 k), then
|-§e,"nﬂz -‘4_1n1+7‘2+21> {enn"z_“(nl"—nZ)l
»

1 2 ¢ . 12
— )| F L £ a0 Rusrs =) =57 B, 3,04 65 ey

i=0 j=0 i=0j=0

< i M2 S $1 0, 0, Ry e G—F) — -3} |

i=0j=0

oty ”“ 2 $ % e alh

i=0 4=
By letting Kﬂg—)i ?Z |a: a;], the proof is completed. Q.E.D.
= =

We end this section by letting ¢u(x]p, ¥) be the p.d.f. of the /-variate normal

random vector with mean g and covariance matrix 3.
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3. The main theorem and its proof.

Theorem 3.1. Let {X;; /=0, +1, 2, «-+} be the sequence of i.i.d. normal random
variables with common p.d.f. $:1(x10, 6%. If we assume that the observations Xomigiop
Aoritzeps % Xomioty Xony @0 Xngrt, Xngyg, *ov Xn,pp Are zeros, then the conditional p.d.f.
of the random vector Xo=(X,, X;, -+, X.)" given R0 =00, Rupyn(D=ay, -,
R n(p)=a, tends to $n(Xnl0, An) as ny, my—oc,

Proof. If we let ¢o:¢m+nz+2p(gcen,,nzﬁg, 6 1), then, for any Xonyne € G(ny, 155 ),
Koexp{=h(n+n)/(2 69} <¢o <Ky exp (hin--n;)/(2 )},
where Ky=(2 T) =Tt 2exp {—ao(ny+1,) /(2 69}, If ¢, is defined by
Priensszs (Fnins]0, Aniiniizs), then Lemma 2.4 implies that, for any Koty ns
e G(my, ny; b)),
Kyexp{—(m+ny) hK/2} <¢, <K, exp{(n,+n)hK/2},
where Klz{(27r)"1+"=+2"iAn,+m+zpl}“/Zexp{—(nl+nz)/2}. Combining these inequalities,
we obtain that, for any Kenyyne € Gy, 1,5 ),
C(=h, ny+ny) Ko/ Ki<do/ 1 <C(h, 1, Ko/ K,
where C(h, n)=exp {hn(K+5-2)/2}. As a matter of convenience, we denote G(ny, n, ; k)

by G unless there is confusion. Then these inequalities imply that

Clty mt YKo/ Ko< o dnins /| A Clh, i) Ko/ K,
A similar procedure yields that

Clt it ) Kol K< o dx @, /| 90 d5P0,0ns<Clh, m2my) KoK,
Combining the above inequalities implies that
chbo dx®,, Ssgbl A%y ms
ch&o A Xy, ns . 569/;1 dx®

The conditional p.d.f. of the random vector X given R, (0)=ay, Row(D=ay, +-,

Rew(P)=a, is

C<—2h, m-i—nz)g

<C2h, ny+ny). G.D

lim flx|GCny, ny s b)) =lim gy dxo,,., /SG(;;U AXniom,
0" . A0 ~

Pe] ~

.
=lim \G@h dx® ., /L@’u AXnsyn, , 3.2

h~0 &
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where the last equality holds by (3.1). The R.H.S. of (3.2) is the conditional p.d.f.
of Xo=(X,, Xz, -, X,)’ given the conditions that R.,..(j)=a, j=0, 1, -+, p where
Xoiyme=(Xiomiy, Xoomty oty Kooy X..) is the normal random vector with mean 0 and
covariance matrix Aa,,., under the zero assumptions. We denote the conditional p.d.f.
in the RH.S. of (3.2) by ¢(¥n|Ruyn(i)=a;, 07<p).

What is left to be shown is that the conditional p.d.f. ¢(xn|Rupn.(fD=a; 0=<J<P)

tends to the unconditional p.d.f. ¢.(¥10, A.). Since it is known that
$(¥nl Rusyna(D=0ts, 0 p)=lim §(xa| G113, 7125 1))
:¢(~xm) I}}El;’l Pr(G(n,, n,; lz)[{:m)/Pr(G(nl, 1,5 ), (3.3)
where ¢(x.) is the marginal p.d.f. of X, it is necessary to show that the limit in

the R.H.S. of (3.3) tends to one as #s,—cc and ny—co. If we let d(J; M, M,) be

TLT{Q X e XD+ S Gty 1= Xy XD+ (= X)) X
Ny—H; 1=1 1=j+! i=m+1
for j=0, 1, -+, p, if we let
H=H(a ; n, n)=1{(2o, 21, 22)| 12| <(mi+n)*V2, 0<j<p},
He=H(a; ny, n)=1{(z0, 21, =+ 20)||2:—d (G 5 m, n) | <(orn)='?, 0<j<pl,
Hi={(z, 21, = 25)||2;] <1, 0<<j<<p},
and if we let A=(n,+n,)* where a <0, then Lemma 2.3 implies that

lim lim Pr{G(m, #;; )}

ni,nz~ h=0

lim {1210, @dz if @<~0.5,
1 if —0.5<a <0,
§, BriCzl0, @ dz if @=—0.5,

where the case that « is greater than —0.5 is due to problem 3 of Chung (1974,
p.93). A similar procedure yields that
lHm lim PriG(n,, #n,; A) | xa}

ny,nz= ™ A=0

[ lim {  g..(zl0, @ dz if @a<<—0.5,

n1,ng oo vl ~ o~ -

=1 q if —0.5<a<0,
{, Benilz10, 0 dz if a=—0.5,

since d(i ; n,, n,) tends to zero almost everywhere for =0, 1, 2, =, P Thus,

if —0.5< a0, then
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lim lim Pr(G(n,, n, ; h)]ic,,.)/Pr(G(nl, n: 5 W))=1. (3. 4)

niynz=eo k=0
If @ is less than —0.5, we obtain that

lim lim Pr(G(m, nz; ) 120)/Pr(G(m, 1,5 1))

niynz= h-0
e in)myen (g (20, @) dz
Gtz { g, (200, 0) dz

_lim

T ay,ngzoe

:¢p+1((_)19, Q>/¢p+1(9197 D=1, 3.5
where the second to the last equality holds by the fact that lim d( ; #, #,)={ a.e.

for i=0, 1, ---, p. From Equations (3.3), (3.4) and (3.5), we conclude that
Hm _g(al Ruym(D=ats, =0, 1, o, p)=g(xs).

Since Xa,,», is the normal random vector with mean 0 and covariance matrix Anipn,
the marginal p.d.f. (x.) of the random vector X, is ¢n(%.|0, A.). (See, e.g., Anderson

(1958, p.22]). Q.E.D.
4. Concluding Remarks.

Theorem 3.1 tells us that the conditional p.d.f. of the random vector X.=(X), X,,
-+, X.)" given the sample autocovariance constraints R.,,.,(j)=a, for 0<<j<(p, where
{X.|t=0, £1, £2, -~} is a sequence of I.i.d. mormal random variables with common
p.d.f. ¢,(x]0, 6%, tends to ¢"‘Of’"|9’ An) which is the maximum entropy p.d.f. subject
to the corresponding constraints Cov(X:, Xi,;)=a; for /=1, 2, ---, m—j and j=0, 1, .
2, (Choi and Cover [1984]).

Van Campenhout and Cover (1981) have shown that the conditional p.d.f. of X, given

%iZ:)lXi:a, where {Xi} is a sequence of i.i.d. random variables with common p.d.f.
g(x) satisfying some regularity conditions, is the asymptotically closest, in Kullback-
Leibler’s sense, to the initial p.d.f. g(x) among the p.d.f.’s satisfying E(X))=a. As
shown in Appendix, the p.d.f. gzim(.fmlg, A.) is closest, in the Kullback-Leibler sense, to
qu(J_cmiQ, 0*I) among the p.d.f.’s satisfying Cov(X), Xiu)=a, for [=1, 2, -, m—j and
=j0, 1, +=-, . Thus Theorem 3.1 is a multivariate extension of Van Campenhout and
Cover’s theorem.

If we let
Xg:_(al Xt_1+a2 Xt_2+ "'+ ap lep)"l\’ Ve, t:0, il, iZ, ey (4. 1)
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where {V.} is a sequence of i.i.d. normal random variables with mean 0 and variance
¢?, then the random vector g(m:(X‘, X, -, X,)" has the p.d.f. ¢,,,(2cm}(~), A.). Thus
the conditional p.d.f.’s of i.i.d. normal random variables tend to the joint p.d.f. of the
Gaussian AR process in (4.1), which has the autocovariance function{as ; k=0, =1, ---}.
This result can be related to the maximum entropy spectral density. Burg has proposed
that the maximum entropy (rate) spectral density among the stationary (Gaussian) time

series {X.} satisfying Cov(X,, X)) =a; for 0=<j<p is

S.D=1 T aexp(—id)=-2|% a;exp(—il)|*
¥ ~27[l=~oo ! p a 27 =0 ! b 7 ?

which is the spectral density of the AR process defined by (4.1). If m—co so that
m=0((n+n,)*) for 0<a <%, then Theorem 3.1 still holds. In this case, the theorem
implies that the Fourier transform of the autccovariance function of the limiting condi-
tional p.d.f. is the maximum entropy spectral density subject to the constraints Cov(X,,
X)) =a; for j=0,1, 2, -+, p and any integer /. Thus, Theorem 3.1 gives another
rationale to the maximum entropy spectral density.

Theorem 3.1 may be used in ARMA model modification. Box-Jenkins’ approach to
model building consists of three stages called identification, estimation and diagnostic
checking. The identification stage is deciding the orders of AR part and MA part, the
estimation stage is estimating the AR coefficients and the MA coefficients, and the
diagnostic checking stage is testing whether possible lack of fit exists or not. If any
inadequacy is found in diagnostic checking, then we should modify our model. Since
the diagnostic checking methods, which are proposed by Quenculle (1947), Box and
Pierce (1970), Ljung and Box (1978), etc., are based on the autccovariance function of
residuals of the chosen model, it will be very useful to modify the mcdel by use of the
autocovariance function of the residuals. If the chosen model is correct, then the residuals
{x,} should be uncorrelated. If the residuals {x.} are correlated, we conclude that the
model is incorrect and should be modified. More precisely, if we let R(j):%:g:xtxw,
j=0, 1, 2, -+, where n is the number of residuals, and if R(0)=a, R(D=aiy, *,
R(p)=a, where the p is the largest positive integer that R(p) is significantly different
from zero, then Theorem 3.1 tells us that the residuals are considered to satisfy the
stochastic difference equation (4.1). In other words, an autoregressive moving-average
(ARMA) process {Y,} is identified and estimated by ¢(B) Y.=0(B)X, where ¢(B)=
1+¢ Bt ¢ B2+ -+~ +¢. B, 0(B)=1+0,B+0,B+---+0. Bs and B is the backward-



104 B.S. Choi

shift operator, and if the autocovariances of residuals, R(0), R(1), ++, R(p), are a,,
a1, *» a,(#0), then we may replace the ARMA(r,s) model ¢(BYY:=0(B)X, into the
ARMA(r+p, s) model ¢(B) n(B)Y,=0(B)V,, where »(B)=1+a, B+a, B*++--+a, B?

and {V.} is a sequence of white noises.

Appendix

Lemma. Define g(:f) by ¢,,,(J_C!Q, 6*I). The p.d.f. that minimizes the Kullback-Leibler
information number D(f ; g)sz(gc) In{f(x)/g(x)}dx subject to le- X f(Ddx=a:_, for
li—F1<pis gulxal0, Au.

Proof. D(f; &)= /() In Az~ f(x) Ing(x) dx
=/ n gz =[£G {~in @ 7o) ~ Lot x'a) dx
={ /@ In /() dz+" 1n (2% Lo fax A ax
=[G m fx) ax+ i (27 8%+ 2 672 mag

ZS¢M(~x'Q’ Am) In ¢m(-?f[9, Am) d‘/y‘i‘% In (2 7T0'2)+%5— zm(Xo,
where the last inequality is proved by Choi and Cover (1984). Q.E.D.

REFERENCES

(1) Ables, J.G. (1974). “Maximum Entropy Spectral Analysis,” Astronomy Astrophysics:
Supplement Series, Vol.15, pp.383-393. Reprinted in Modern Spectrum Analysis, D.G.
Childers, Ed. (1978), IEEE Press, pp. 23-33.

(2) Anderson, T.W. (1958). An Introduction to Multivariate Statistical Amalysis, John Wiley
& Sons, Inc., New York.

(3) Anderson, T.W. (1971). The Statistical Analysis of Time Series, John Wiley & Sons, Inc.,
New York.

(4) Anderson, T.W. and H. Rubin (1950). “The Asymptotic Properties of Estimates of the
Parameters of a Single Equation in a Complete System of Stochastic Equations,” The Aunals
of Mathematical Statistics, Vol.21, pp.570-582,

(5) Bartfai, P. (1972). “On a Conditional Limit Theorem,” Progress in Statistics: Colloguia
Mathematica Societatis Janos Bolyai, Vol. 9-1, pp. 85-91.

(6) Box, G. and G. Jenkins (1970). Time Series Analysis: Forecasting and Control, Holden-
Day, Inc., San Francisco.

(7) Box, G. and D. Pierce (1970). “Distributions of Residual Autocorrelations in Autoregressive



Maximum Entropy Probability Density 105

Integrated Moving Average Time Series Models,” Journal of the American Stalistical
Association, Vol. 65, pp.1509-1526.

(8) Burg, J.P. (1967). “Maximum Entropy Spectral Analysis,” Proceedings of the 37th Meeting
of the Society of Exploration Geophysicists. Reprinted in Modern Spectrum Analysis, D.G.
Childers, ED. (1978), IEEE Press, pp.34-41.

(9) Burg, J.P. (1968). “A New Analysis Technique for Time Series Data,” presented at the
NATO Advanced Study Institute Signal Processing with Emphasis on Underwater Acoustics,
Enschede, The Netherlands. Reprinted in Modern Spectrum Analysis, D.G. Childers, Ed.
(1978), IEEE Press, pp.42-48.

(10) Childers, D.G., Ed. (1978). Modern Spectrum Analysis, IEEE Press, New York.

(11) Choi, B.S. (1973). A Study of Recursive Formuiae, (Korean edition), Moonji Pub., Co.,
Seoul, Korea.

(12) Choi, B.S. (1983). “A Conditional Limit Characterization of the Maximum Entropy Spectral
Density in Time Series Analysis,” Ph. D. Dissertation, Stanford University, Stanford, Calif.

(13) Choi, B.S. (1984). “A Conditional Limit Construction of the Normal Probability Density,”
Discussion Paper No. 831206, The Industrial Management Research Center, Yonsei University,
Seoul, Korea. Also, Will be appeared in The Annals of the Institute of Statistical Mathematics.

(14) Choi, B.S. and T.M. Cover (1984). “An Information Theoretic Proof of Burg’s Maximum
Entropy Spectrum,” Proceedings of the IEEE, Vol. 72, pp.1094-1095.

(15) Chung, K.L. (1974). A Course in Probability Theory, (2nd edition), Academic Prees,
New York.

(16) Csiszar, L and J. Kérner (1981). Information Theory: Coding Theorems for Discrete
Memoryless Systems, Akademiai Kiado, Budapest, Hungary.

(17) Darwin, C.G. and R.H. Fowler (1922). “On the Partition of Energy,” The London,
Edinburgh and Dublin Philosophical Magazine and Journal of Science, Vol. 44, Sixth
Series, pp.450-479.

(18) Gantmacher, F.R. (1959). The Theory of Matrices, Chelsea Pub., Co., New-York.

(19) Grandell, J., M. Hamrud and P. Toll(1980). “A Remark on the Correspondence between the
Maximum Entropy Method and the Autoregressive Model,” IEEE Trans. on Information
Theory, Vol.. 1T-26, No.6, pp.750-751.

(20) Jaynes, E.T. (1957,a). “Information Theory and Statistical Mechanics,” Physical Review,
Vol. 106, No.4, pp.620-630.

(21) Jaynes, E.T. (1957,b). “Information Theory and Statistical Mechanics, I,” Physical Review,
Vol. 108, No.2, pp.171-190.

(22) Jaynes, E.T. (1958). Probability Theory in Science and Engineering, Lecture notes issued
by the Socony-Mobil Research Labs, Dallas, Texas.

(23) Jaynes, E.T. (1968). “Prior Probabilities,” JEEE Trans. on Systems Science and Cybernetics,
Vol. SSC-4, No.3, pp.227-241.

(24) Jaynes, E.T. (1978). “Where Do We Standon Maximum Entropy?” The Maximum Entropy
Formalism, R.D. Levine and M. Tribus, Ed. (1978), pp.15-118.

(25) Jaynes, E.T. (1982). “On the Rationale of Maximum-Entropy Methods,” Proceedings of the
IEEE, Vol.70, No.9, pp.939-962.



106 B.S. Choi

(26) Kagan, A.M., Y.V. Linnik and C.R. Rao (1973). Characterization Problems in Mathematical
Statistis, John Wiley & Sons, Inc., New York.

(27) Kaveh, M. and C.R. Cooper (1976). “An Empirical Investigation of the Properties of the
Autoregressive Spectral Estimator,” IEEE Trans. on Information Theory,Vol. 1T-22, pp.
313-323. Reprinted in Modern Spectrum Analysis, D.G. Childers,Ed. (1978), IEEE Press,
pp. 81-91.

(28) Kullback, S. and R.A. Leibler (1951). “On Information and Sufficiency,” The Awunals of
Mathematical Statistics, Vol. 22, pp.79-86.

(29) Lacoss, R.T. (1971). “Data Adaptive Spectral Analysis Methods,” Geophysics, Vol.36, pp.
661-675. Reprinted in Modern Spectrum Analysis, D.G. Childers, Ed. (1978), IEEE Press,
pp. 134-148.

(30) Lanford, D.E. (1973). “Entropy and Equilibrium States in Classical Statistical Mechanics,”
Statistical Mechanics and Mathematical Problems, Lecture Notes in Physics, No. 20, pp.1-
113, Springer-Verlag, Berlin.

(31) Ljung, G.M. and G. Box (1978). “On the Measure of Lack of Fit in Time Series Models,”
Biometrika, Vol.65, pp.297-303.

(32) Quenouille, M.H. (1947). “A Large-Sample Test for the Goodness of Fit of Autoregressive
Schemes,” Journal of the Royal Statistical Society, Vol. A110, pp.123-129.

(33) Sanov, LN. (1957). “On the Probability of Large Deviations of Random Variables,” IMS and
AMS Selected Translations in Mathematical Statistics and Probability, Vol.1, (1961), pp.
213-244.

(34) Tjur, T. (1974). Conditional Probability Distributions, Institute of Mathematical Statistics,
University of Copenhagen.

(35) Van Campenhout, J.M. and T.M. Cover (1981), “Maximum Entropy and Conditional
Probability,” IEEE Trans. on Information Theory, Vol. IT-27, No.4, pp.483-489.

(36) Vasicek, 0.A. (1980). “A Conditional Law of Large Numbers,” The Annals of Probability,
Vol.8, No.1, pp.142-147.

(37) Vincze, I. (1972), “On the Maximum Probability Principle in Statistical Physics, “Progress
in Statistics: Colloguia Mathematico Societatis Janos Bolyai, Vol.9-T, pp. 869-893.

(38) Zabell, S.L. (1974). “A Limit Theorem for Conditional Expectations with Applications
to Probability Theory and Statistical Mechanics,” Ph.D. Dissertation Harvard University,
Cambridge, Mass.



