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ABSTRRACT

A parallel flats fraction for the 3~ design is defined as union of flats llAt ¢ (mod
3D}, i=1, 2,--+, f and is symbolically written as At=C where A is rank 7. The A
matrix partitions the effects into #L1 alias sets where #=(3""r—1)/2. For each alias
set the f flats produce an ACPM from which a detection matrix is constructed. The
set of all possible parallel flats fraction C can be partitioned into equivalence classes.

In this paper, we develop some properties of a detection matrix and C.

1. Introduction

A paralled flats fraction for the 3= factorial experiment is defined as the unicn of
flats {z‘JAt C: (mod 3), i=1,2, s, f} and is symbolically written as At=C where A
is a rxn matrix with rank 7 and C=— <y, Cy, - Cs) is a rxf matrix. Note that Vi
denotes the number of flats.

The A matrix partitions the effects into #+1 alias sets where z= (3" r—1)/2. For
each alias set the f flats produce an alias component permutation matrix(ACPM) with
elements from the permutation group S,

Um(1981) showed that the set of all possible parallel flats fraction C for a given A
and given size can be partitioned into equivalence classes. Table 1 shows the equivalence
classes of C matrix for the 3¢ factorial.

A detection vector of the ACPM was constructed for each combination of % or fewer

two-factor interactions by Um(1983). Also the relationship between the detection vectors
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has been shown. Table 2 shows the detection matrix for the 3* factorial.

2, Basic Lemmas

Suppose that the design 7 is obtained from solution to At=C, where A is rxn with
rank # and C is rxf matrix, Then the following lemmas about the C matrix can be
summarized from Um(1981).

Lemma 1. Let the design T* be obtained from solutions to AE:C* where C* is obtained
from C by permuting columns of C except the first column. Then the designs 7 and
T* are equivalent and C,C* belong to the same equivalence class.

Lemma 2. Let the design 7** be obtained from solutions to Af=C** where C** is
obtained by adding the vector v with elements in GF(3) to each of the columns of C.
Choose v such that there exists one column of 0’s after adding v to each column of C,
then the designs 7 and T** are equivalent and C,C** belong to the same equivalence
class.

Lemma 3. Let the design 7%** be obtained from solutions to Af=C*** where C® =
9 C. Then the designs T and 7T*** are equivalent and C, C*** belong to the same
equivalence class.

Lemma 2 and Lemma 3 can be combined to establish designs which are equivalent.
If T* is obtained from solutions to At=C" where C*=2C. (v, v, V), then the designs

T and T* are equivalent and C,C” belong to the same equivalence class.

3. Main Results

Note that elements of ACPM depend on a C matrix and the detection vectors are
obtained from ACPAM. It is important to relate the detection vectors to the C matrix.
We now develop some relationships between the equivalence class of C matrix and the
detection vectors.

Lemma 4. Let the matrix C* be obtained from C by permuting columns of C except
the first column. Then the detection vector obtained from C* are just a permutation of
clements of the detection vectors obtained from C.

Proof. Each column of C matrix corresponds to one row of ACPM Pi, i=1, 2, -+, 1,

where -1 is the numbszr of alias sets.
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Suppose that two columns of C, say column 2 and column 3, are permuted. Then for
every I the corresponding rows of Pi, that is row 2 and row 3, are interchanged.
Therefore, the columnl-2 (the difference between row 1 and row 2) of the detection
vector obtained from C becomes the columm 1-3 (the difference between row 1 and row
3) of the detection vector obtained from C*. This is true for any permuting columns of
C except the first column. This completes the proof.

Lemma 5. Two detection vectors obtained from C and C**, where C**=2C, are the
same,
Proof. In order to get ACPM, suppose that we have

Pr=(0, x; 1 €2, %:td €5, o1, %, 4" 2,)(See Um(1980)).

Then the ACPM whose elements are composed of 0,1 and 2 can be obtained.
Therefore, multiplying the matrix C by 2 implies simply that the elements of ACPM
are multiplied by 2. Afer this the transformations are performed. Then (012) obtained
from C becomes (021) obtained from C**, and (021) becomes (012). Hence the detection
vectors are not affected. This completes the proof.

The implication of Lemma 5 is that if one column of C** can be obtained by
multiplying the corresponding column of C by 2 then the detection elements for the
difference between the first row and the corresponding row of ACPAM are the same for
C and C*x,
Lemma 6. Let the matrix C*** be obtained from C by adding nonzero vector v. Then
the detection vector obtained from C*** are the same with the detection vector obtained
from C or a permutation of columns of the detection vector obtained from C.
Proof. Suppose that we choose v such that the second column will have 0 after
adding v to the C. Then the first column of C*** ig 0 and the second column is .
This implies that the second column of C*** can be obtained by multiplying the second
column of C by 2. Therefore, the detection elements for the difference between the first
row and the second row of ACPM are not changed with C and C*** This means that
for any choice of column of C the detection element for the difference the first row and
the corresponding row of ACPM are the same for C and C***,

Without lose of generality let P*=(0, c;, ¢,) where the corresponding effects are E|,

E, E, Let C= 0 ¢ C”]where ¢i; = GF(3) and the columns are different from each
LO €s2 €23
other, and let V'=(—¢, —¢2). Consider the detection vectors for various values of ¢;;.

(Case 1). One of ¢, and ¢, is zero. Suppose that ¢,,=0, Thenclearly ¢, is 1 or 2,
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C***:LO —Ci2 —C2 O3 gng the following ACPM are obtained from P* :
0 0 Ca3

ACPM for C ACPM for C***
El Eg E3 E1 EZ ES

\'0 0 0 0 0 0
{0 Cia 0 } {0 —Cy2 0}
0 Ci3 Cas 0 —Cyz TC13 €23

For any choice of ¢,3 the detection vector for the effect E, is the same with C and CH**,
Consider the detection vectors for the effect E,. Suppose that ¢;;=ci;. Then —ci, % 0
and —cp2+C13=0.
Therefore, the detection vector for C*** can be obtained by interchanging the second
column with the third column of the detection vector for C. Suppose that ¢;,=c;5. Then
theare are four possible cases:

(CIZ» 613>:<17 0)7 (27 0); (17 2>, <2’ 1)-
a) Let'c,=1 and c¢;3=0. Thne C***:Lo 2 2 J and

0 0 ¢y
ACPM for C ACPM for C***
E, E, E; E, E, E,
0 0 0 0 0 0
{0 1 0 1 {0 2 0 1
0 0 Cos) 0 2 €21

The detection vectors for C*** can be obtained by permuting the second column and the
third column of the detection vectors for C. Sinmilarly, this holds for ¢;,=2 and ¢;3=0.

b). Let ¢;,=1 and ¢;3=2. Then we have

ACPM for C ACPM for Cx**
E, £, E; E E, E,
[o 0 0 W [0 0 0
{0 1 0 0 2 0
‘LO 2 Cas- LO 1 c;j

Both matrices produce the same detection vectors. This holds for ¢;,=2 and c¢;;=1.
Similar arguments hold for ¢;,=0.
(Case 2). ¢, and ¢ are 1 or 2. Suppose that ¢;,=c;.. Then we have

ACPM for C ACPM for C***
El Eg E3 El EZ E3

ro 0 0 TO 0 0 )
\‘0 Cy2 Ci2 LO —C12 —Ci2 |

0 —Cip +Ci3 —Cra Can
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It is clear that if ¢,;5=0 or 1 then for the effect £, the detection vector for C*** can b€
obtained by permuting the second column and the third column of the detection vectors
for C. If ¢;5=2 then the detection vectors are the same for hoth cases.

Suppose that ¢,,%¢,. Then we have

ACPM for C ACPA for CH+*
E, E, L, E, E, £,
ro 0 0 ro 0 0 7
‘ 0 Ci2 Cap [ 0 —Cyy —szJ
LO 13 €23 L0 —Ciz C13 —Cyp +Ca3

Obviously, if ¢;3=20 or 1, then for the effect E, the detection vector for C*** can be
obtained by permuting the two columns of detection vector for C. If ¢13=2 then the
detection vectors are the same for both cases. The same argument holds for the effect
E; with the various values of Cas.

The above arguments in Case 1 and Case 2 are true for any choice of v and for any
form of P*,
This completes the proof.

Combining Lemmas 4,5 and 6the following theorem is obtained.
Theorem. Suppose that C matrix C, and C, are rxf matrices where C, and C, belong
to the same equivalence class. Then the detection vectors for C; and C, are the same or

permute each other.

4. Example

Consider a 3* factorial experiment for which it can be assumed that all three and

four-factor interaction effects are negligible, The A matrix for this example will be

taken as
A:F 1 1 0}
L1 2 0 1
thus there are flats of size nine. The alias sets are
S(): {,“} »

S ={F,, Iy, I, F2F42, F3F4}’ SZ:{F27 FlFs, rF, F3F42}7
Ss:{Fs, Fle, F1F42a F2F4}, S4:{F47 Flez’ F1F32, FZFSZ}-

An example of a parallel flats fraction in 27 runs is given with

C=(C, C,, C,) as C:[O 0 1
- 0 1 2]
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By choosing the main effect in each alias set as the identified effect, the ACPAM are

F, F,F, F,F} F,F* F, F.F, F . F, F,F¢
re e e e e e e e
P,=\e e (0210 (012) J P,=|e e  (012) ©2D
le  (021) (012) e e (021 (021) (021D
F, F.F, F\F} F,F, F, F.F? F\F¢ F,F¢
re [4 e e e e 4 e '!
P.=|e e  (021) (012) Pi=le (021) (021) (02D
le  (021) e  (012). e (012) e (021)J

Table 1 shows the equivalence classes of C and Table 2 shows the detection vectors for

this example.

TABLE 1. EQUIVALENCE CLASSES OF 0 MATRIX FOR 3¢, DESIGN

CLASS 1
001 001 02 2 010 010 0 2 2
01 2 021 0 21 0 21 01 2 01 2
0 0 2 0 0 2 011 020 020 011
021 01 2 01 2 01 2 0 21 0 21
CLASS 2
01 2 021 0 21 0 21 01 2 01 2
001 001 02 2 010 010 0 2 2
021 01 2 01 2 01 2 0 21 021
00 2 0 0 2 011 020 020 011
CLASS 3
001 0 01 0 2 2 010 010 02 2
010 0 2 2 010 001 0 2 2 0 01
0 0 2 00 2 011 020 020 011
02 0 011 0 20 0 0 2 011 00 2
CLASS 4
0 01 0 01 0 2 2 010 010 0 2 2
011 0 2 0 00 2 011 0 0 2 020
0 0 2 0 0 2 011 020 02 0 011
0 2 2 010 0 01 0 2 2 0 01 010
CLASS 5
000 000
01 2 021
CLASS 6
01 2 0 2 1
000 00
CLASS 7
01 2 021
01 2 021
CLASS 8
01 2 021

021 01
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TABLE 2. THE DETECTION MATRIX FOR THE 3¢ DESIGN

Pl i P2 P3 P4
12 | 13 | 23 } 12 | 18 | 23 | 12 | -3 | 23 12| 13| 23
1 MAIN| o | o | o [ ol oo oo o I o | o | o
2 2o to oo oo 011110
3 B Lo | o0 | o ‘ ol 1 1ol oo |10 |1
4 oo 01111 o1 lo o o
5 23 0 1 1 |0 0 0 0 0 0 1 1 0
6 24 | 11 1 o oo 1| o ot ol o |
7 34 ’ 1 ' 0 | 1 ‘ 11| o i L B B O ’
8 1213 0 | o ’ VA S U T T T T T T T R
9 12 1| o | o | o | 1 1 1] 1 1 1 1 1
0 1228 | o | 1] 1| o (NI R A U T R RO A
o122 |1 1|1t bo o ol 111|111 } 1
12 12 34 | 1 lo 11 1 0 ‘ 0 1 1 1 1 1
13 13 14 r L O T T ’ 1
4 13 23 1 o0 ’ 1 1 0 1 1 0 0 0 1 11
15 13 24 \ 1] 1 1 0 1 1 ‘ 1 1 0 1 | o f 1 ’
6 133 1o | 1| 11100001 ' 0 | 1
7owmo2s o 11 |1 1|1 | ’ o 1,110
18 14 24 | 1 r 1 1 1 Lo ’ 1 r 1 1 ’ 0l 0 ) 0 |
19 1 3¢, 1 ! g TR S T S O O % 0ol o ’
20 23 24 ' 1|1 |1 oo 0 1 ‘ 1 0 1 11 | 0]
21 233 1 111 11| ¢ J ol oo 1|10
22 203 1111 1| U 1 0 f 0O 0 | 0 ‘
COLUMN 4-8 DENOTE THE SUBSRIPTS OF TWOFACTOR INTERACTIONS -
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