Properties of Detection Matrix and Parallel Flats Fraction for 3" Search Design+

Jung-Koog Um*

ABSTRRACT

A parallel flats fraction for the 3^n design is defined as union of flats $[t|At=c_i \pmod 3)$, $i=1, 2, \cdots$, f and is symbolically written as At=C where A is rank r. The A matrix partitions the effects into u+1 alias sets where $u=(3^{n-r}-1)/2$. For each alias set the f flats produce an ACPM from which a detection matrix is constructed. The set of all possible parallel flats fraction C can be partitioned into equivalence classes. In this paper, we develop some properties of a detection matrix and C.

1. Introduction

A paralled flats fraction for the 3^n factorial experiment is defined as the union of flats $\{\underline{t} \mid A\underline{t} = \underline{C}_i \pmod 3\}$, $i=1,2,\cdots,f\}$ and is symbolically written as $A\underline{t} = C$ where A is a rxn matrix with rank r and $C = (\underline{C}_1, \underline{C}_2, \cdots, \underline{C}_f)$ is a rxf matrix. Note that f denotes the number of flats.

The A matrix partitions the effects into u+1 alias sets where $u=(3^{n-r}-1)/2$. For each alias set the f flats produce an alias component permutation $\operatorname{matrix}(ACPM)$ with elements from the permutation group S_3 .

 ${\rm Um}(1981)$ showed that the set of all possible parallel flats fraction C for a given A and given size can be partitioned into equivalence classes. Table 1 shows the equivalence classes of C matrix for the 3^4 factorial.

A detection vector of the ACPM was constructed for each combination of k or fewer two-factor interactions by Um(1983). Also the relationship between the detection vectors

^{*}Department of Computer Science, Sogang University, Seoul 121, Korea

^{*}Research supported by University Research Grant.

has been shown. Table 2 shows the detection matrix for the 34 factorial.

2. Basic Lemmas

Suppose that the design T is obtained from solution to $A\underline{t}=C$, where A is rxn with rank r and C is rxf matrix, Then the following lemmas about the C matrix can be summarized from Um(1981).

Lemma 1. Let the design T^* be obtained from solutions to $A\underline{t} = C^*$ where C^* is obtained from C by permuting columns of C except the first column. Then the designs T and T^* are equivalent and C, C^* belong to the same equivalence class.

Lemma 2. Let the design T^{**} be obtained from solutions to $A\underline{t}=C^{**}$ where C^{**} is obtained by adding the vector \underline{v} with elements in GF(3) to each of the columns of C. Choose \underline{v} such that there exists one column of 0's after adding \underline{v} to each column of C, then the designs T and T^{**} are equivalent and C,C^{**} belong to the same equivalence class.

Lemma 3. Let the design T^{***} be obtained from solutions to $A\underline{t} = C^{***}$ where $C^{***} = 2C$. Then the designs T and T^{***} are equivalent and C, C^{***} belong to the same equivalence class.

Lemma 2 and Lemma 3 can be combined to establish designs which are equivalent. If T^* is obtained from solutions to $A\underline{t}=C^*$ where $C^*=2C_+(\underline{v},\underline{v},\cdots,\underline{v})$, then the designs T and T^* are equivalent and C,C^* belong to the same equivalence class.

3. Main Results

Note that elements of ACPM depend on a C matrix and the detection vectors are obtained from ACPM. It is important to relate the detection vectors to the C matrix. We now develop some relationships between the equivalence class of C matrix and the detection vectors.

Lemma 4. Let the matrix C^* be obtained from C by permuting columns of C except the first column. Then the detection vector obtained from C^* are just a permutation of elements of the detection vectors obtained from C.

Proof. Each column of C matrix corresponds to one row of ACPM P_i , $i=1, 2, \dots, u$, where u+1 is the number of alias sets.

Suppose that two columns of C, say column 2 and column 3, are permuted. Then for every i the corresponding rows of Pi, that is row 2 and row 3, are interchanged. Therefore, the column1-2 (the difference between row 1 and row 2) of the detection vector obtained from C becomes the column 1-3 (the difference between row 1 and row 3) of the detection vector obtained from C^* . This is true for any permuting columns of C except the first column. This completes the proof.

Lemma 5. Two detection vectors obtained from C and C^{**} , where $C^{**}=2C$, are the same.

Proof. In order to get ACPM, suppose that we have

$$P^* = (0, x_2 \underline{t}_0' \underline{e}_2, x_3 \underline{t}_0' \underline{e}_3, \dots, x_q \underline{t}_0' \underline{e}_q) (\text{See Um}(1980)).$$

Then the ACPM whose elements are composed of 0,1 and 2 can be obtained. Therefore, multiplying the matrix C by 2 implies simply that the elements of ACPM are multiplied by 2. After this the transformations are performed. Then (012) obtained from C becomes (021) obtained from C^{**} , and (021) becomes (012). Hence the detection vectors are not affected. This completes the proof.

The implication of Lemma 5 is that if one column of C^{**} can be obtained by multiplying the corresponding column of C by 2 then the detection elements for the difference between the first row and the corresponding row of ACPM are the same for C and C^{**} .

Lemma 6. Let the matrix C^{***} be obtained from C by adding nonzero vector \underline{v} . Then the detection vector obtained from C^{***} are the same with the detection vector obtained from C or a permutation of columns of the detection vector obtained from C.

Proof. Suppose that we choose \underline{v} such that the second column will have $\underline{0}$ after adding \underline{v} to the C. Then the first column of C^{***} is $\underline{0}$ and the second column is \underline{v} . This implies that the second column of C^{***} can be obtained by multiplying the second column of C by 2. Therefore, the detection elements for the difference between the first row and the second row of ACPM are not changed with C and C^{***} . This means that for any choice of column of C the detection element for the difference the first row and the corresponding row of ACPM are the same for C and C^{***} .

Without lose of generality let $P^*=(0, c_1, c_2)$ where the corresponding effects are E_1 , E_2 , E_3 . Let $C=\begin{bmatrix}0 & c_{12} & c_{13}\\0 & c_{22} & c_{23}\end{bmatrix}$ where $c_{ij}\in GF(3)$ and the columns are different from each other, and let $V'=(-c_{12}-c_{22})$. Consider the detection vectors for various values of c_{ij} . (Case 1). One of c_{12} and c_{22} is zero. Suppose that $c_{22}=0$. Thenclearly c_{12} is 1 or 2,

$$C^{***} = \begin{bmatrix} 0 & -c_{12} & -c_{12} + c_{13} \\ 0 & 0 & c_{23} \end{bmatrix}$$
, and the following $ACPM$ are obtained from P^* :

ACPM for C
 ACPM for
$$C^{***}$$
 E_1
 E_2
 E_3
 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & c_{12} & 0 \\ 0 & c_{13} & c_{23} \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & -c_{12} & 0 \\ 0 & -c_{12} + c_{13} & c_{23} \end{bmatrix}$

For any choice of c_{23} the detection vector for the effect E_3 is the same with C and C^{***} . Consider the detection vectors for the effect E_2 . Suppose that $c_{12}=c_{13}$. Then $-c_{12} \neq 0$

and $-c_{12}+c_{13}=0$.

Therefore, the detection vector for C^{***} can be obtained by interchanging the second column with the third column of the detection vector for C. Suppose that $c_{12} \neq c_{13}$. Then theare are four possible cases:

$$(c_{12}, c_{13}) = (1, 0), (2, 0), (1, 2), (2, 1).$$

a) Let $c_{12} = 1$ and $c_{13} = 0$. Thue $C^{***} = \begin{bmatrix} 0 & 2 & 2 \\ 0 & 0 & c_{23} \end{bmatrix}$ and

The detection vectors for C^{***} can be obtained by permuting the second column and the third column of the detection vectors for C. Sinmilarly, this holds for $c_{12}=2$ and $c_{13}=0$.

b). Let
$$c_{12}=1$$
 and $c_{13}=2$. Then we have

AC	PM for	C	AC	$ACPM$ for C^{***}						
E_1	E_{2}	E_3	$E_{\mathtt{1}}$	E_{z}	$E_{\scriptscriptstyle 3}$					
Γ0	0	0 7	<u></u>	0	0 7					
0	1	0	0	2	٠ ا					
0	2	c{23}	Lo	1	c_{23}					

Both matrices produce the same detection vectors. This holds for $c_{12}=2$ and $c_{13}=1$. Similar arguments hold for $c_{12}=0$.

(Case 2). c_{12} and c_{22} are 1 or 2. Suppose that $c_{12}=c_{22}$. Then we have

It is clear that if $c_{13}=0$ or 1 then for the effect E_2 the detection vector for C^{***} can be obtained by permuting the second column and the third column of the detection vectors for C. If $c_{13}=2$ then the detection vectors are the same for both cases.

Suppose that $c_{12} \neq c_{22}$. Then we have

ACPM for C
 ACPM for C***

$$E_1$$
 E_2
 E_3
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & c_{12} & c_{22} \\ 0 & c_{13} & c_{23} \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -c_{12} & -c_{22} \\ 0 & -c_{12} + c_{13} & -c_{22} + c_{23} \end{bmatrix}$

Obviously, if $c_{13}=0$ or 1, then for the effect E_2 the detection vector for C^{***} can be obtained by permuting the two columns of detection vector for C. If $c_{13}=2$ then the detection vectors are the same for both cases. The same argument holds for the effect E_3 with the various values of c_{23} .

The above arguments in Case 1 and Case 2 are true for any choice of \underline{v} and for any form of P^* .

This completes the proof.

Combining Lemmas 4,5 and 6the following theorem is obtained.

Theorem. Suppose that C matrix C_1 and C_2 are rxf matrices where C_1 and C_2 belong to the same equivalence class. Then the detection vectors for C_1 and C_2 are the same or permute each other.

4. Example

Consider a 3⁴ factorial experiment for which it can be assumed that all three and four-factor interaction effects are negligible. The A matrix for this example will be taken as

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix},$$

thus there are flats of size nine. The alias sets are

$$\begin{split} &S_0 = \{\mu\}\,, \\ &S_1 = \{F_1, \ F_2, \ F_3, \ F_2 \, F_4^2, \ F_3 \, F_4\}\,, \ \ S_2 = \{F_2, \ F_1 \, F_3, \ F_1 \, F_4, \ F_3 \, F_4^2\}\,, \\ &S_3 = \{F_3, \ F_1 \, F_2, \ F_1 \, F_4^2, \ F_2 \, F_4\}\,, \ \ S_4 = \{F_4, \ F_1 \, F_2^2, \ F_1 \, F_3^2, \ F_2 \, F_3^2\}\,. \end{split}$$

An example of a parallel flats fraction in 27 runs is given with

$$C = (\underline{C}_1, \ \underline{C}_2, \ C_3)$$
 as $C = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$.

By choosing the main effect in each alias set as the identified effect, the ACPM are

$$F_{1} \quad F_{2}F_{3} \quad F_{2}F_{4}^{2} \quad F_{3}F^{4} \qquad \qquad F_{2} \quad F_{1}F_{3} \quad F_{1}F_{4} \quad F_{3}F_{4}^{2} \qquad \qquad F_{2} \quad F_{1}F_{3} \quad F_{1}F_{4} \quad F_{3}F_{4}^{2} \qquad \qquad F_{2} = \begin{bmatrix} e & e & e & e \\ e & e & (021) & (012) \\ e & (021) & (012) & e \end{bmatrix} \qquad P_{2} = \begin{bmatrix} e & e & e & e \\ e & e & (012) & (021) \\ e & (021) & (021) & (021) \end{bmatrix} \qquad \qquad F_{3} \quad F_{1}F_{2} \quad F_{1}F_{4}^{2} \quad F_{2}F_{4} \qquad \qquad F_{4} \quad F_{1}F_{2}^{2} \quad F_{1}F_{3}^{2} \quad F_{2}F_{3}^{2} \qquad \qquad F_{2}F_{3}^{2} \qquad \qquad F_{3} = \begin{bmatrix} e & e & e & e & e \\ e & e & (021) & (012) \\ e & (021) & e & (012) \end{bmatrix} \qquad P_{4} = \begin{bmatrix} e & e & e & e & e \\ e & (021) & (021) & (021) \\ e & (012) & e & (021) \end{bmatrix}$$

Table 1 shows the equivalence classes of C and Table 2 shows the detection vectors for this example.

	,	TABLE 1	. Е	QU	IVALENC	E (CLA	SSES	oF	0	ΜA	TRIX	FOR S	3⁴ ,	DESIGN			
CLAS																		
	0	1	0	0	1	0	2	2		0	1	0	0	1	0	0		2
		2	0	2	1	0	2	1		0	2	1	0	1	2	0	1	2
0	0	2	0	0	2	0	1	1		0	2	0	0	2	0	0		1
0		1	0	1	2	0	1	2		0	1	2	0	2	1	0	2	1
CLA	SS	2																
	1		0	2	1	0	2	1		0	2	1	0				1	
0		1	0	0	1	0	2	2		0	1	0	0	1	0	0	2	2
0	2	1	0	1	2	0	1	2		0	1	2	0	2	1	0	2	1
0	0	2	0	0	2	0	1	1		0	2	0	0	2	0	0	1	1
CLA		3																
0		1	0	0	1	0	2	2		0	1	0	0	1	0	0	2	2
	1	0	0	2	2	0	1	0		0	0	1	0	2	2	0	0	1
0	0	2	0	0	2	0	1	1		0	2	0	0	2	0	0	1	1
0	2	0	0	1	1	0	2	0		0	0	2	0	1	1	0	0	2
CLA	SS	4																
	0	1	0	0	1	0	2	2		0	1	0	0	1	0	0		
0	1	1	0	2	0	0	0	2		0	1	1	0	0	2	0	2	0
0	0	2	0	0	2	0	1	1		0	2	0	0			0	1	
0	2	2	0	1	0	0	0	1		0	2	2	0	C	1	0	1	0
CLA	SS	5																
	0		0	0	0													
0	1	2	0	2	1													
CLA	SS	6																
0	1	2	0	2	1													
0	0	0	0	0	0													
CLA	ASS	7																
0	1	2		2														
0	1	2	0	2	1													
CLA	SS	8																
0	1	2	0															
0	2	1	0	1	2													

TABLE 2. THE DETECTION MATRIX FOR THE 34 DESIGN

				P1			P2			P3		P4			
		1	-2	1-3	2-3	1-2	1-3	2-3	1-2	1-3	2-3	1-2	1-3	2-3	
1	MAI	N	0	0	0	0	0	0	0	0	0	0	0	0	
2	12		0	0	0	0	0	0	0	1	1	1	1	!	
3	13		0	0	0	0	1	1	0	0	0	1	0	1	
4	14	.	0	0	0	1	1	1	1	0	1	0	0	1	
5	23		0	1	1	0	0	0	0	0	0	1	1	0	
6	24		1	1	1	0	0	0	1	1	0	0	0	0	
7	34		1	0	1	1	1	0	0	0	0	0]	0	
8	12 13		0	0	0	0	1	1	0	1	1	1	0	1	
9	12 14	1	0	0	0	1	1	1	1	1	1	1	1		
10	12 23)	1	1	0	0	0	0	1	1	1	1	1	
11	12 22	1	ı !	1	1	0	0	0	1	1	1	1	1		
12	12 34	1	l	0	1	1	1	0	0	1	1		1	1	
13	13 14)	0	0	1	1	1	1	0	1	1	1	1	
14	13 23			1	1	0	1	1	0	0	0	1	0	1	
15	13 24	1		1	1	0	1	1	1	1	0	1	1	1	
16	13 34	1		0	1	1	1	1	0	0	0	1	0	1	
17	14 23	0)	1	1	1	1	1	1	0	1	1	0	1	
18	14 24	1		1	1	1	1	1	1	1	1	0	1	0	
19	14 34	1		0	1	1	1	1	1	0	1	1	0	0	
20	23 24	1	ĺ	1	1	0	0	0	1	1	0	0	0	0	
21	23 34	1	- 1	1	1	1	1	0	0	0		1	1	0	
22	24 34	1	- !	1	1	1	1	0	1	1	0	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	

COLUMN 4-8 DENOTE THE SUBSRIPTS OF TWO-FACTOR INTERACTIONS

References

- (1) De Bruijn, N.G. (1964) Pólyas theory of counting, Applied Combinatorial Mathematics, Wiley.
- (2) Kerber, A. (1970) Representations of permutation groups, Springer-Verlay.
- (3) Srivastava, J.N. (1975) Designs for searching nonnegligible effects, A Survey of Statistical Design and Linear Models, edited by J.N. Srivastava, North-Holland Publishing Co.
- (4) _____(1976) Some further theory of search linear models, Contributions to Applied Statistics, edited by Ziegler, Birkhauser, Basel and Stuttgert.
- (5) ____(1977) Notes on parallel flats fractions, Unpublished.
- (6) Um, J.K. (1980) ACPM for the 3ⁿ parallel flats fractional factorial design, Journal of the Korean Statistical Society, Vol. 9, No. 1.
- (7) _____(1981) Number of equivalence classes of a parallel flats fraction for the 3ⁿ factorial design, Journal of the Korean Statistical Society, Vol. 10.
- (8) _____(1983) A detection matrix for 3* search design, Journal of the Korean Statistical Society, Vol. 12, No. 2.