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Analysis of Orthotropic Body Under Partial-Uniform Shear Load
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Abstract

This dissertation presents an exact solution for the shearing and normal stresses of an ortho-
tropic plane body loaded by a partial-uniform shear load. The solution satisfies the equilibrium
and compatibility equations concurrently. An Airy stress function is introduced. to solve the
problem related to an orthotropic half-infinite plane under a partial-uniform she:axj load.

All the equations for .orthotropy must be degenerated into the expressions foriisotropy when
orthotropic constants are replaced by isotropic ones. The author has evaluated all the equations.
of orthotropy and succeeded in obtaining exactly identical expressions to the equations of
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isotropy which were derived independently by means of L’hospital's rule.

The analytical results of isotropy are compared with the simple results of other investigator.
Since a concentrated shear load is a particular case of partial-uniform shear load, all the equati-
ons of partial-uniform shear load case are degenerated into the expressions for concentrated load

case of isotropy and erthotropy.

The formal solution is expressed in terms of closed form. The numerical results for orthotro-
py are evaluated for two kinds and two different orientations of the grain of wood. The type of
wood considered are three-layered plywood and laminated delta wood. The distribution of normal
and shearing stresses are shown in figures. It is noted that the distribution of stresses of orthc-
tropic materials dependson the type of materlals and orientations of the grain.

1. Introduction

The investigation of the problem of a partial
uniform shear lead applied to the orthotropic
half-infinite plane is'a great practical interest.
Many theoretical paper, in the past, have been
written on the subject of orthotropy. An intr-
oduction to be elasticity of anisotropic materials
was covered in two classical books; one by
Love, A.E.H., (16) and the other by Green,
A.E., and Zerna, W., (8). Lekhnitskii, S.G.
(15) discussed in detail the generalized plane

problems related to anisotropy. Silverman, LK.,

(19) presented, in 1964, a closed form solution
for an orthotropic beam subjected to arbitrary
normal and shear loads which can be described
by polynomials. More recently, Hashin, Z.,(9)
developed a general method to solve Silverm-
an’s problem relevant to any anisotropic beam
since wood is assumed to be orthotropic, in
1967, Hooley, R.F., and Hibbert, P.D., (10)
investigated the stress concentrations in  the
vicinity of external loads applied to timber
beam. They assumed the external loads were
spread over a finite area and. utilized a finite
element technique to obtain numerical values
for Douglas. fir. Since then, ‘many technical
paper are written including some relating to
the problem of concentrated and a partial

uniform load applied to orthotropic materials
(20, 24, 25, 26).

This paper presents an exact solution for
the stresses of isotropic and orthotropic half-
infinite plane loaded by an uniform shear load,
with a definite width. Fourier integral is intr-
oduced to solve the problem. and the solution
satisfies the equilibrium and compatibility
equations. The equations of orthotropy are
degenerated into the expressions for isotropy
when orthotropic constants are replaced by
isotropic ones. Also, the equaitions of a partial
uniform load case can be degenerated into the
expressions for concentrated load case since the
sum of uniform shear loads becomes a single
concentrated shear load.

The numerical results of isotropic case agree
quite closely with simple results of other inv-
estigators. The numerical results for orthotrepy
are evaluated for two kinds of wood and two
different orientations of the grain. The type
of wood considered are three-layered plywocd
and laminated delta wood. The formal solutions
are expressed in terms of closed form. The
numerical results are shown in figures.

2. Analysis of Orthotropic Half-Infinite
Plane,

2-1. Formulation of Governing Equations
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Considering a unit thickness of a half-infinjte
isotropic plane as shown in Figure 1 the partial
uniform shear load on: y=0 can be expressed
in terms of Fourier cosine integral of freque-

ncy 5 as

f(x) :ZTqL -—ﬁl,— sin (a5") cos (") d5’

8y
Where “a” represents a half of the loaded
length. Then, the boundary conditions are

represented by the Fourier integral as

1) at y=0;0,=0 (2a)
2) at 3'"0 s Try'™ 2_q jﬂ é/” sin (als’)
cos (xp))ds’ (2b)
;——- ] —— a —4—14\_’ q
- e — ""“’o"_ — > X g
ya

Fig. 1. Partial-Uniform Shear Load on an
Orthotropic Half-Infinite Plane
With the axes of coordinates taken along the
principal axes of orthotropy; the governing
equation for the plane problem of orthotropy,
which is equivalent to the biharmonic equation
of the plane isotropy can be expressed as

4
o’ (’ 2 =
5zt T (D DY) 0x0N*
L D2D,? f ” =0 (3)
where D+ D, ’2('"(2;#(5-““
56
. C
DD, 2 1L .
"Dy Coe (3a)

the clastic constants can be expressed in terms
of the moduli as

~ 1 1
Co=g~  Cn= E, (1a)
CrpeEre 2 oo L 4l
"ETE, TR CeTmg @b
For the isotropic case, from Egs. 3a, D,
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and D, become unity and Egq. 3 is reduced to

the biharmonic equation
e

o oo )
oyt

PrEN P T =0 )
The substitution of the assumed Airy stress

function
o= fo) sin (25)d
into Eq. 3 yields
NEIO=
+f¥(3)Di*D?* ] sin (zf")dp’ =0

which is reduce to

5 (3) (Di*+Dy?)

D*Df% (3) — (D -+ D) 1 () +67F (3)
-0 ®
The solution of Eq. 6 gives
F(y)=Eoe™’+-Foe"' +Goe?*+ Hpe”  (7a)
in which
e B B
m = 02 s N== )
__& .

and E; and F, are orthotropic constants to be
found from the boundary conditions at =0,
while the constants Gy and H, are zero hecause
¢ should be bounded as y-—-oo Thefefore, ¢
becomes

0= (Boe™-t-Foe™) sin (z)df’ (8)
From Eq. 8 it follows that
0y= g;i’ ——-~—j: G (Ege™-+Foe™) .
sin (z8’)ds’ (9a)
Tyyus - _(%ym—_—-ml: 5 (mEe™ +nFoe™)
cos (28')d 5’ (9b)

substituting Eq. 9a and 9b into the boundary

conditions given by FEgs. 2, the following

results,
S (Eot+Fo) =0
L: & (mEo-+nkFo) cos (x3)d5

(9¢)

b

cos (25)d3" (9d)



Solving the Egs. Yc and 9d simultaneously, Eo
and F, are found to be

2g _sin(a3’) "

Eo~—— T rg(m n) (10'11
_2g _sin(ap)

R (10b)

substituting E¢ and F, in Eq. 3~8, ¢ becomes

2q I d___.?m,ﬁa:; )
(P o e VY ]
i 0 [—- D, + Dy }ﬁ )

[ = s @ards

To non-dimensionalize = and y, the following

substitutions can be made.
v=2 i f=as’ ; d=adi’ (12)

Finally, ¢ can be expressed in terms of the

=%,
Ay a9

coordinates £ and »

2qa*D,D, r sin 3 [e—-b!?z—u ) ..e“'n%‘"]
0

T2 (D1 —Dy) 53
sin (§3)d;3 (13)

2-2. Stresses

It follows from Eq. 13 that
. 2q * sing
7= Z(Di—Dy) I 3

[Bre e i sncenras

(14a)
L 2¢D,D, r sin 3
Oy= z{D,—Dy) 8
At £
[e 5, —e B, ]sxn(.’,‘ﬁ)d,a (14b)
B 29 r sin 8
xy== W(Dl—Dz) 0 13
L -L
[Dle b, ~-Dhe P JCOS(Eﬁ)d:S
(14¢)

Performing integrations, the stresses are given
by the closed form as

=y | o l(3r)

+<e+»=]~~m[<%~>*+<s-~wn

>2]H

(15a)

Ak {m{(l’; )+(»~ 1)2]
ln[( ) + (& 1)2}
(e vl

—%ln[(~]§;~)2'%(5‘%1)2}] (15b)
T D, Dy qu‘__ D) [Dx [tzm 1 DD ("3}+ D

-1 Dz(f""l) ]___ D, (- T 1)

- tan [tan -

- tan - (15¢)

D1(s/ 1) ”

2-3. Particular Case of Isotropy

The general case of orthotropy has Dbeen
discussed in Section 2. Since isotropy is a par-
ticular case of orthotropy, all the equations
presented in ‘Section 2 must be degenerated
into the expressions for isotropy when orthotr-
opic. constants are replaced by isotropic ones.
In other words, when D, and D, become unity.
the orthotropic equations should be reduced to
isotropic expressions. The anthor has evaluated
all the equations of orthotropy presented in
this section Dy==D,=1 and succeeded in obtai-
ning exactly identical expressions to the equa-
tions of isotropy which were derived indepen-
dently by means of L’hospital’s rule. As shown
in Egs. 15, if Dy and D, given by unity appl-
yving L’hospital’s rule, the denominator and
numerator of the integrand are separately
differentiated once with respect to other D, or
D, are substituting the unity into other D; or
D,

when D,==1
becomes

’ix}D1=1 ZﬁDz(l -Dy) Hln[( 5 )2
+e+Y-inf(F) -0
~-DA{In[7+ G+ D7 Il G- 1))

(16)
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is substituted, the IIg. 15a




The first differentiation of the numerator and
denominator of the integrand gives a definite
limiting value for the integrand. Thus, when
L’hospital’s rule is applied

[Integrand Felpy=1= 27[(1__21)2)

1
2
2n DF

- (-1—)2+(5-+-1)=
o 2D,

(& 2 )+

007+ (-1 —~Inl7+ G 1} |

an
substituting the unity into D; in Eq. 17
7

[Integrand Ux:lblzbgzlzi “Wz

Lf‘(f l)”} ﬂnf?ﬁz‘i‘(f**'l)zl

~Inl7+ D7 (18)

Similary, the following limiting values are
found to be

[Integrand ffy]lJl::Dp:l: g [ y/z+ (%2.{_1)2
R
7+ (E—-1)* } (19
[Integrand <.,1p;=py=1== “"3"“1’@;;;1—)”
RN Cond VI B LRV
tan™i == } [ o@D
5(E—1)
] @0

2-4. Particular Case of Concentrated Shear
Load for Orthotropy.

As shown in Eqs. 15, all the equations of
partial-uniform shear load case also imust be
degenerated into the expressions for concentr-
ated shear load P. If the loaded length “a”
approaches to zero and 2qa are replaced by P,
the equations of partial-uniform shear load

case should be reduced to equations of conce-
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ntrated shear load case.

Then, it is necessary to examine each inte-
grand for the abnormal behavior as a—0

This indeterminate form should be evaluated
by L’'hospital’s rule, Applying L’hospital’s
rule, the denominator and numerator of the
integrand are separately 'differentiated once
with respect to “a”

Then,
(Integrand 7,] =555~ =
" zc(Dy—Dsy)
P
77 ™~
L) D)
(21)
P :
[Integrand ﬂy]‘_D:" " ne(Dy—Dy)
g ¢
ICAY 1) +e ] =
{ F) e ()
(Integrand rw]‘_fﬁ?%
7 N /i

where “c” is a unit length of coordinates

2-5. Particular Case of Concentrutéd shear
Load for Isotropy.

In the concentrated shear load case, Since
isotropy is a particular case of orthotropy, all
the equations of orthotropic case must be deg-
enerated into the expressions for isotropy when
orthotropic constants are replafned by isotropic
ones. As shown in Eqs. 21,22 and 23, if D,
and D, become unity, the orthotropic equations
should be reduced: to isotropic equations. The
following equations were obtained by means
of L’hospital’s rule from orthotropic case

- S
[Integrand o ;: < [P+E
(24)
2677
[Integrand gl};l:b]z:lmlc A ET
(25)
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Elastic Constants

Orthetropic Constants

Type of wood ' ‘
5 E;XlO“pSI EyXlOGDSi Vx GXIO‘DSI D, Dg
Three-layered X- strong axis ] 1.71 | 0.85 I 0. 036 I 0.1 l 0.25 3.0

plywood y-strong axis | 0-85 1.71 [ .07 | 0.1 [ 0. 34 4.12

Laminated. X-strong axis | 4.3 0.67 | 0.02 ] 031 | o872 [ 1.415

delta wood ystrong axis | 0.67 | 43 | oo | oz | o7 | ae

) : .
[Integrand- 7,, J=—1n P 3&‘ 7?2 . ropic and orthotropic cases have been expressed
Dy=bp=1 ¢ [9*4€7] by the closed forms. Isotropic results are
(26)

Eps. 24,25 and 26 coincide with the simple
equations of other investigators 23.

3. Discussion of Numerical Results

The exact solutions of stresses of both isot-
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presented first and they are compared with
the results of other investigators,

The stresses given by Eqs 15a, 15b and 15¢
is good for any kind of timber which exhibit
For the sake
of comparison, numerical values are calculated

physical property of orthotropy.

50 .

30

Fig. 3. Distribution of Normal Stress
(2o

*] | O 2.0 3.0 40 50

T 1728
\ n403 : b1
2.0 e e

i
3.0 -L B )

b
Q

Fig. 5. Distribution of Mormal Stress
(4
Oy == [’ﬁ)Q
For D| 0. 25, Dz' 3.00

ERRW N LS



20} -

:
1
i
:
i

! !

3o ,_.._Y.T_A._.‘ i Gt
B i

dee

o%

Fig. 6. Distribution of Normal Stress
Ty== (%)Q
For D;=0.25, D;=3.00

te]
O
N
o]
i
>
o
jon
{o]

20

]
NLah ]

30 . +

Fig. 8. Distribution of Normal Stress
{19
o=(f)o
For Dy=0.34, D,=4.12

30 D £

VIR SN -

Y
Fig. 10. Distribution of Shearing Stress
(3o

For D;zo. 34, D1=4. 12

ﬂ‘fﬂfﬁmibmuﬁsn —

-1

0 ! '
i e “‘
! SR |
20,
Q .
Fig. 7. Distribution of Shearing Stress
-~(2)e
For Dlzo- 25, Dz=3- 00
4] X
20 '
| |
30 +
Y
Q

Fig. 9. Distribution of Normal Stress

ﬁ \f \L~ "'Q"-"’ ! 1 ;‘. ‘
10 \ \20 ‘ i
AN ,

I 1S /
20 e e ST L ]
30 T puaanh | h
|
N 1 i -
4
G

Fig. 11. Distribution of Normal Stress

~(2)o
For D,=0.872, D,=1.415



[} L
!.. RTI
0 I - . - '
| | R N G
I 1
20 . !
30
L

»

Fig. 12. Distribution of Normal Stress
o=()e
For Dy=0.872, D»=1.415

° o 20 30 40 50 ¢
-y i i T T
i i |
10 : S T
N A
\ 1 » ]
20| H
i |
30 + - -
|
y
Q

Fig. 14. Distribution of Normal Stress

(2o
For D,=0.71, D;=3.62

Lo, Y 1 20 30 . I3
, 4% 2.0 o e S
o . 2D FE N
| e » B E : i
) = 97 4
I o : . :
%0, L L _ ;_ i N 4
20f—— L : :
I -
3.0} .
v
Q

Fig. 16. Distribution of Shearing Stress
= (e

T
For D,=0.71, D;=3.62

'W i,
- : <
1.0 .. |
] BN
i ‘ , i i
20 X . ' i
L 1.4 ‘
3v hd i
]
1 4

Fig. 13. Distribution of Shearing Stress
e(Yo
For D,=0.872, D;=1.415

20

Fig. 15. Distribution of Normal Stress

Uy"‘"('g.‘)Q
For D,=0.71, D,=3.62

for two different kinds of timber and two
different orientations .of the grain. The kinds
of timber considered are thrée‘-layerbdffiplywood
and laminated delta wood. Two . different orien-
tations of the grain are strong axis in the z
direction and strong axis in the y direction.

Table 1 indicates the values of elastic consta-
nts and the values of D, and D. for each case
studies.

The values for elastic constants, E,, E,, G
and v, are as given by Lekhnitskii. With this
constants, the values of D, and D, are computed
using Eq. 3a. 4a, and 4b.
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In the table, the grain of the surface layers
of three-layered plywood and laminated delta
wood are assumed to be paralled to x axis in
the case of x-strong axis.

The distribution of two normal stresses and
shearing stress are shown in Fig. 2,3, and 4
for isotropy.

Also, the same stresses are shown in Fig. 5
to Fig. 16 for two orientations (z-strong axis,
y-strong axis) of threeé-layered plywdod and
laminated delta wood, respectively.

4. Conclusions

An analytical solution. for the stresses of
isotropic and orthotropic half-infinite plane
under a partial uniform shear load is presented
using Fourier integral and Airy stress function.
The solution of orthotropy is reduced to the
solution of isotropy when orthotropic constants
are replaced by isotropic ones.

The solutions of a partial uniform shear load
case are degenerated into the expressions for
concentrated load case since the sum of unif-
ormly distributed shear loads becomes a single
concentrated load. Also, the solution of isotropy
in equal to the results of other investigators.

Numerical values are computed and reported
in figures for the cases of isotropy, three-
layered plywood and laminated delta wood.

Two orientations of grain are considered in
It is noted that distrib-
utions of the stresses of a orthotropic body

the timber materials,

depend on the type of material and orientation

of the grain,
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