Jordan Automorphisms on Direct Sums of Simple Rings

R.A. Heeg

1. Introduction

Suppose \(R \) is a direct sum of \(K \) simple rings and \(G \) is a group of automorphisms of \(R \) of finite order, \(|G|\). If \(R \) has no \(|G|\)-torsion (i.e. \(|G|r=0 \) implies \(r=0 \) for all \(r \in R \)) then Osterburg has shown in [6] that the fixed ring of \(R \) under \(G \) is a direct sum of at most \(|G|K\) simple rings. We shall prove the analogous result when \(G \) consists of Jordan automorphisms of \(R \).

2. Preliminaries

Let \(R \) and \(S \) be rings and \(T \) an additive map of \(R \) into \(S \). Then \(T \) is called a Jordan homomorphism if (i) \((x^2)T=(xT)^2\) and (ii) \((xyx)^T=xTyTzT\) for all \(x, y \) in \(R \). Any additive map satisfying (i) necessarily satisfies (i') \((xy+yx)^T=xTyT+yTxT\) and if \(S \) has no 2-torsion (i.e. \(2s=0 \) implies \(s=0 \) for every \(s \in S \)) then additivity and (i') imply both (i) and (ii) [c.f. Herstein: Topics in Ring Theory].

As can be readily verified, any Jordan homomorphism \(T \) also satisfies \((xyz+zxy)^T=xTyTzT+zTyTzT\) as well as \([x, [y, z]]T=[xT, [yT, zT]]\) where \([a, b]=ab-ba\).

Clearly every (associative) homomorphism or anti-homomorphism is a Jordan homomorphism and conversely we have

Theorem 1. (Herstein [1]) Every Jordan homomorphism onto a prime ring is either a homomorphism or anti-homomorphism.

As a corollary we have

Corollary 2. (Martindale-Montgomery [4]) Let \(T \) be a Jordan isomorphism from \(R \) onto \(S \) and let \(P \) be a prime ideal of \(R \). Then the image of \(P \) under \(T \) (denoted \(PT \)) is a prime ideal of \(S \) and \(R/P \),

Received October 1, 1983
Suppose R is a non-commutative ring with involution \ast. Define $\tau : R \to R \oplus R$ by $r' = (r, r^\ast)$. Then τ is a Jordan monomorphism (i.e. τ is a one-to-one Jordan homomorphism) whose image is not a subring of $R \oplus R$. Similarly, there are Jordan homomorphisms whose kernels are not (associative) ideals. This prompts the following definitions.

An additive subgroup A of an associative ring R is called a (special) Jordan ring if a^2, aba are in A whenever $a, b \in A$.

An additive subgroup I of a Jordan ring A is called a (quadratic) Jordan ideal if $x^2, xax, axa, xa + ax$ are in I whenever $x \in I$ and $a \in A$. We write $I \subseteq_j A$.

Every associative ring is a Jordan ring and every ideal of an associative ring is a Jordan ideal. The image of a Jordan homomorphism is a Jordan ring and the kernel of a Jordan homomorphism is a Jordan ideal. Also, the image of a Jordan ideal under a Jordan homomorphism is a Jordan ideal of the image of the Jordan homomorphism.

In [3], McCrimmon has shown that every non-zero Jordan ideal of a semiprime ring contains a nonzero (associative) ideal. Using this fact and Corollary 2, we can characterize Jordan automorphisms on direct products of prime rings. But first we give some examples.

Example 1. Let R be a commutative ring and $\text{Mat}_n(R)$ denote the $n \times n$ matrices over R. Then the map $M \to M^\ast$ which takes each matrix to its transpose is an involution and hence a Jordan automorphism.

Example 2. Let R be a non-commutative simple ring with involution \ast. Define $\tau : R \oplus R \to R \oplus R$ by $\tau(a, b) = (a^\ast, b)$. Then τ is a Jordan automorphism (of order 2) on a direct sum of simple rings which is neither an automorphism nor anti-automorphism.

Example 3. Let R, \ast be as in example 2. Define $\tau : R \oplus R \to R \oplus R$ by $\tau(a, b) = (b, a^\ast)$. Then τ, is a Jordan automorphism of order 4.

Example 4. Let R, \ast be as in example 2. Let ρ be a prime greater than 2. Let $S = R_1 \oplus R_2 \oplus \ldots \oplus R_p$ each $R_i = R$. Define $\tau_\rho : S \to S$ by $\tau_\rho(r_1, r_2, \ldots, r_p) = (r_2^\ast, r_3^\ast, \ldots, r_p^\ast, r_1)$; then τ_ρ is a Jordan automorphism of order ρ.

We note that in examples 2, 3, 4 we can replace R with any ring and \ast with any Jordan automorphism on R in order to obtain a Jordan
Jordan automorphisms on direct sums of simple rings

The following theorem shows that these are the only Jordan automorphisms on direct products of prime rings.

Theorem 3. Let \(R = \prod_{\alpha \in \Lambda} S_\alpha \) where each \(S_\alpha \) is a prime ring and let \(g \) be a Jordan automorphism on \(R \). Then for each \(\beta \in \Lambda \), there is \(\gamma \in \Lambda \) so that \(S_\beta^g = S_\gamma \) and the restriction of \(g \) to \(S_\beta \) is either an automorphism or anti-automorphism.

Proof. \(S_\beta \) is the intersection of the prime ideals of \(R \) which contain \(S_\beta \). Therefore the image of \(S_\beta \) under \(g \) is an intersection of prime ideals of \(R \) by Corollary 2. In particular, \(S_\beta^g \) is an associative ideal of \(R \).

Let \(K \subseteq \Lambda \) such that \(S_\beta^g \) contains an element which has a non-zero entry in \(S_\beta \) if and only if \(\ell \in K \).

Suppose \(\ell \in K \) and \(s \in S_\ell \) such that \(s \) appears in the \(l^{th} \) component of an element of \(S_\beta^g \) with \(s \neq 0 \). Since \(S_\beta^g \) is an ideal of \(R \), \(S_\beta^g S_\ell \subseteq S_\beta^g \). Consequently \(s S_\ell \subseteq S_\beta^g \). Likewise \(S_\ell s \subseteq S_\beta^g \) and \(x s y \in S_\beta^g \) for all \(x, y \in S_\ell \). Therefore \(S_\beta^g \) contains an ideal of \(S_\ell \), which is non-zero by the primeness of \(S_\ell \).

So for each \(\ell \in K \) there is a nonzero ideal \(I_\ell \) of \(S_\ell \) such that \(S_\beta^g \supseteq \prod_{\ell \in K} I_\ell \).

We now show that \(K \) contains exactly one element. Suppose \(\ell, \ell' \in K \), \(\ell \neq \ell' \). Then \(I_\ell \cap I_{\ell'} = 0 \). Thus \(0 = g^{-1}(I_\ell \cap I_{\ell'}) = g^{-1}(I_\ell) \cap g^{-1}(I_{\ell'}) \).

But \(g^{-1}(I_\ell), g^{-1}(I_{\ell'}) \) are nonzero Jordan ideals of \(S_\beta \). By McRimmon's result there are nonzero ideals \(A \) and \(B \) of \(S_\beta \) with \(A \subseteq g^{-1}(I_\ell) \) and \(B \subseteq g^{-1}(I_{\ell'}) \). But this forces \(A \cap B = 0 \) which contradicts the primeness of \(S_\beta \). Thus \(K \) contains exactly one element. This implies that there is a \(\gamma \in \Lambda \) such that \(S_\beta^g \subseteq S_\gamma \).

Applying the same argument to \(S_\gamma \) and \(g^{-1} \), we get \(S_\gamma^{g^{-1}} \subseteq S_\beta \) where \(\delta \in \Lambda \). But this implies that \(S_\gamma \subseteq S_\beta^g \) and so \(S_\beta^g \subseteq S_\gamma \subseteq S_\delta^g \) which gives \(S_\beta \subseteq S_\delta \) forcing \(\beta = \delta \). Consequently \(S_\beta^g = S_\gamma \).

The last statement of the theorem is a consequence of Theorem 1.

If \(R \) is a ring and \(G \) is a group of Jordan automorphisms of \(R \), then the fixed ring of \(R \) under \(G \) is \(\{ r \in R \mid r^g = r \text{ for every } g \in G \} \) and is denoted \(R^G \). If \(g \) is an element of any group, then \(\langle g \rangle \) denotes the subgroup generated by \(g \). In particular, if \(I \) is a subring of \(R \) which is \(g \)-invariant (i.e. \(I^g = I \)) then \(I^{<g>} \) denotes the set of elements of \(I \) which are fixed by \(g \).
Finally, we note another consequence of Theorem 1 which appears in [4]. Namely, if \(R \) is a prime ring, \(G \) is a group of Jordan automorphisms of \(R \), and \(H \) is the subgroup of \(G \) consisting of (associative) automorphisms of \(R \), then the index of \(H \) in \(G \) is either one or two. In either case, \(H \) is normal in \(G \). If \(H \neq G \) then \(G/H \) acts as involution on \(R^H \).

3. Main Theorem

In this section we consider the action of a finite group of Jordan automorphisms on a ring which is a direct sum of simple rings. Our main result (Theorem 11) extends theorems of both Osterburg [6] and Sundstrom [7]. We start with the result in [6].

Theorem 4 [Osterburg]. Let \(R \) be a ring which is the direct sum of \(k \) simple rings and \(G \) a finite group of automorphisms of \(R \) such that \(R \) has no \(|G| \)-torsion. Then the fixed ring of \(R \) is a direct sum of \(l \) simple rings where \(l \leq k|G| \).

For involutions, we have the following result proved in [1].

Theorem 5. If \(R \) is a simple ring of characteristic not 2 and \(g \) is an involution on \(R \), then the fixed ring of \(R \) is a simple Jordan ring.

A simple Jordan ring is a Jordan ring which has no nonzero proper Jordan ideals. Since every associative ideal is a Jordan ideal, any associative ring which is a simple Jordan ring is a simple ring. Conversely, if \(R \) is a simple ring then \(R \) is a simple Jordan ring. For if \(R \) has a nontrivial proper Jordan ideal, \(A \), then by McCrimmon's result \(R \) contains a nonzero associative ideal contained in \(A \), which contradicts the simplicity of \(R \).

In [7], Sundstrom considers the situation when \(G \) is a finite solvable group consisting of automorphisms or anti-automorphisms, acting on a direct sum of simple rings which has no \(|G| \)-torsion. The subgroup of automorphisms of \(G \) is a normal subgroup, \(H \), of index 2 with \(G/H \) acting on \(R^H \) as an involution. In general, when \(G \) is a finite solvable group of Jordan automorphisms on a direct sum of simple rings, the subgroup of automorphisms is not necessarily of index 2 in \(G \). In example 3, \(\tau \) is a Jordan automorphism of order 4 and the only automorphism in \(\langle \tau \rangle \) is the identity. When \(G \) is not solvable, the subgroup of automorphisms is not necessarily normal as the next
example illustrates.

Example 5. Let \(R \) be a simple non-commutative ring with involution \(* \). Let \(S = R \circledast R \circledast R \) and \(G = \langle \tau, \rho \rangle \) where \(\tau(a, b, c) = (a, c^*, b) \) and \(\rho(a, b, c) = (c, a, b) \) then \(\tau \rho^{-1}(a, b, c) = (b^*, c^*, a) \) so \(\tau \rho \rho^{-1} \) is not an automorphism and hence the subgroup of automorphisms of \(G \) is not normal.

Nevertheless, by using Theorems 3, 4, and 5, we can prove analogous results for Jordan automorphisms.

We start with

Lemma 6. Suppose \(R = \sum_{i=0}^{n-1} \oplus S_i \) and \(g \) is a Jordan automorphism of \(R \) such that

(i) \(g^n \) is the identity

and

(ii) \(S_i^g = S_{i+1(mod \ n)} \)

Then the fixed ring of \(R \) is Jordan isomorphic to \(S_0 \).

Proof. If \(s \in S_0 \) then \(s \oplus s^g \oplus s^{2g} \oplus \cdots \oplus s^{ng-1} \) is fixed by \(g \). Conversely, if \(r \in R \) is fixed by \(g \) then \(r \) is of the form \(s \oplus s^g \oplus s^{2g} \oplus \cdots \oplus s^{ng-1} \) where \(s \in S_0 \). So \(R^{<g^*>} = \{ s \oplus s^g \oplus s^{2g} \oplus \cdots \oplus s^{ng-1} | s \in S_0 \} \). The map from \(S_0 \) to \(R^{<g^*>} \) given by \(s \rightarrow s \oplus s^g \oplus s^{2g} \oplus \cdots \oplus s^{ng-1} \) is a Jordan isomorphism.

We generalize the result in

Lemma 7. Suppose \(R \) is a ring and \(g \) is a Jordan automorphism such that \(R = \sum_{i=0}^{n-1} \oplus I^i \). Then the fixed ring of \(R \) is Jordan isomorphic to the fixed ring of \(I \) under \(\langle g^n \rangle \).

Proof. Clearly, each \(I^i \) is \(g^n \)-invariant so

\[
R^{<g^*>} = \bigoplus_{i=0}^{n-1} I^i <g^*> = \bigoplus_{i=0}^{n-1} (I^i)^{<g^*>}
\]

By letting \(S_i = (I^i)^{<g^*>} \) and \(g' \) be a generator of \(\langle g \rangle / \langle g^n \rangle \) we can apply Lemma 6 to \(\bigoplus_{i=0}^{n-1} S_i \) and \(g' \) to obtain

\[
(\bigoplus_{i=0}^{n-1} (I^i)^{<g^*>})^{<g'/g^n>} = (\bigoplus_{i=0}^{n-1} S_i)^{<g'>} = S_0 = I^{<g^n>}.
\]

But

\[
(\bigoplus_{i=0}^{n-1} (I^i)^{<g^*>})^{<g>/g^n>} = (R^{<g^*>})^{<g>/g^n} = R^{<g^*>}
\]

So \(R^{<g^*>} \cong g I^{<g^*>} \).
We now prove

Theorem 8. Let R be a simple ring and G a finite group of Jordan automorphisms of R. If R has no $|G|$-torsion, then the fixed ring of R is a direct sum of at most $|G|$ simple Jordan rings. If, in addition, G does not consist solely of automorphisms then the fixed ring of R is a direct sum of at most $|G|/2$ simple Jordan rings.

Proof. Let $H = \{ g \in G | g \text{ is an automorphism of } R \}$. If $H = G$, then by Theorem 4 we are done.

We now assume $H \neq G$. Then the index of H in G is equal to 2 and G/H acts as involution of R^H. By Theorem 4, R^H is a direct sum of at most $|H|$ simple rings; so suppose $R^H = \bigoplus_{i=1}^{n} S_i$ where each S_i is a simple ring and $n \leq |H|$.

We first consider the case when S_1 is G/H-invariant. Either the action of G/H on S_1 is that of the identity or that of an involution. In either case, $S_1^{G/H}$ is a simple Jordan ring.

Now suppose S_1 is not G/H invariant. Then by Theorem 3, there is an $1 \leq n$ that the image of S_1 under the non-identity element of G/H is S_1. In this case G/H acts on $S_1 \oplus S_1$ and by Lemma 6, $(S_1 \oplus S_1)^{G/H} \cong S_1$. Continuing, we see that $R^G = (R^H)^{G/H}$ is a direct sum of at most $|H| = |G|/2$ simple Jordan rings.

We now investigate the situation when R is a direct sum of simple rings, proving first a result about associative automorphisms.

Lemma 9. Let $R = S_1 \oplus S_2$ where S_1, S_2 are simple rings and let G be a finite group of automorphisms of R. If R has no $|G|/2$ torsion and S_1 is not G-invariant, then the fixed ring of R is a direct sum of at most $|G|/2$ simple rings.

Proof. Let $K = \{ g \in G | S_1^g = S_1 \}$. Then K is normal in G and has index 2. Consequently,

$$R^G = (R^K)^{G/K} = ((S_1 \oplus S_2)^K)^{G/K} = (S_1^K \oplus S_2^K)^{G/K}$$

with is isomorphic to S_1^K by Lemma 6. And by Theorem 4, S_1^K is a direct sum of at most $|K|$ simple rings.

Therefore, R^G is a direct sum of at most $|G|/2$ simple rings.

We now extend this Lemma by allowing Jordan automorphisms.
THEOREM 10. Let \(R = S_1 \oplus S_2 \) where \(S_1, S_2 \) are simple rings and let \(G \) be a finite group of Jordan automorphisms of \(R \) such that \(R \) has no \(|G|\)-torsion.

(i) If \(G \) does not consist solely of automorphisms, then the fixed ring is a direct sum of at most \(3|G|/2 \) simple Jordan rings.

(ii) If \(S_1 \) is not \(G \)-invariant, then the fixed ring is a direct sum of at most \(|G|/2 \) simple Jordan rings.

(iii) If the hypotheses of (i) and (ii) are both satisfied and \(\{g \in G | S_1^g = S_1\} \neq \{g \in G | g \text{ is an automorphism}\} \), then the fixed ring is a direct sum of at most \(|G|/4 \) simple Jordan rings.

Proof. Let \(K = \{g \in G | S_1^g = S_1\} \) and let \(H = \{g \in G | g \text{ is an automorphism of } R\} \). We first prove:

(ii) Suppose \(S_1 \) is not \(G \)-invariant. Then the index of \(K \) in \(G \) is equal to 2. As in the proof of Lemma 9, \(R^G \cong \oplus S_1^K \) and by Theorem 8, \(S_1^K \) is a direct sum of at most \(|K| = |G|/2 \) simple Jordan rings.

(i) We may assume that \(S_1 \) is \(G \)-invariant. Otherwise, we can apply part (ii). Since \(G \) does not consist solely of automorphisms, its action on either \(S_1 \) or \(S_2 \) is not that of associative automorphisms. Therefore the fixed ring of either \(S_1 \) or \(S_2 \) is a direct sum of at most \(|G|/2 \) simple Jordan rings by Theorem 8. The fixed ring of the other summand is a direct sum of at most \(|G| \) simple Jordan rings also by Theorem 8. Therefore \(R^G \) is a direct sum of at most \(|G|/2 + |G| = 3|G|/2 \) simple Jordan rings.

(iii) As in the proof of Lemma 9, \(R^G \cong \oplus S_1^K \) (or, equivalently, \(R^G \cong \oplus S_2^K \)). If the action of \(K \) on both \(S_1 \) and \(S_2 \) is that of automorphisms then \(K \subseteq H \). But the index of \(K \) in \(G \) is equal to 2. So either \(K = H \) or \(H = G \). But, by hypothesis, neither of these can happen. Consequently, we may assume that \(K \) does not act as automorphism on \(S_1 \). By applying Theorem 8, \(S_1^K \) is a direct sum of at most \(|K|/2 \) simple Jordan rings. That is, \(R^G \) is a direct sum of at most \(|K|/2 = |G|/4 \) simple Jordan rings.

We remark that when \(S_1 \) is not \(G \)-invariant, we need only require that \(R \) has no \(|G|/2\) torsion.

As a final result we prove:

THEOREM 11. Let \(R \) be a direct sum of \(K \) simple rings and \(G \) a finite group of Jordan automorphism of \(R \) such that \(R \) has no \(|G|\)-torsion. Then the fixed ring is a direct sum of at most \(K|G| \) simple
Jordan rings. This bound can be achieved only when each summand of \(R \) is \(G \)-invariant and \(G \) consists solely of automorphisms of \(R \).

Proof. Let \(R = \sum_{i=1}^{K} S_i \). If each \(S_i \) is \(G \)-invariant then we can apply Theorem 8 to conclude that \(R^G \) is a direct sum of at most \(K|G| \) simple Jordan rings. If, in addition, \(G \) does not consist solely of automorphisms, then the action of \(G \) on some \(S_i \) does not act as automorphisms. Consequently, \(S_i^G \) is a direct sum of at most \(|G|/2 \) simple rings. Therefore \(R^G \) is a direct sum of at most \((K-1)|G| + |G|/2 < K|G|\) simple Jordan rings.

Now assume that some \(S_i \) is not \(G \)-invariant and let \(\text{Orbit}(S_i) = \{S_i^s | g \in G \} \). We will show that if \(R' \) is the direct sum of the distinct elements of \(\text{Orbit}(S_i) \) then the fixed ring \(R' \) under \(G \) is a direct sum of at most \(|G|/n \) simple Jordan rings where \(n = |\text{Orbit}(S_i)| \).

Let \(H = \{g \in G | S_i^g = S_i \} \) and let \(g_0, g_1, ..., g_{n-1} \) be distinct representatives of the right cosets of \(h \) in \(G \) (where \(g_0 \) is the identity) then \(R' = S_i^{g_0} \oplus S_i^{g_1} \oplus ... \oplus S_i^{g_{n-1}} \) and \(n = [G : H] \).

We claim that \((R')^G = \{s + s^g + ... + s^{g_{n-1}} | s \in S_i^H \}\). Clearly any element of \((R')^G\) is of the form \(s + s^g + ... + s^{g_{n-1}} \) where \(s \in S^H \). Now let \(g \in G \). Then \((s + s^g + ... + s^{g_{n-1}})^g = s^g + s^{g_1g} + ... + s^{g_{n-1}g} \). But there is a \(h \in H \) and \(i_0 (0 \leq i_0 \leq n-1) \) so that \(g = h g_{i_0} \). Consequently, \(s^g = s^{g_0 g_{i_0}} = s^{g_{i_0}} \). Similarly, there is \(h' \in H \) and \(i_1 (0 \leq i_1 \leq n-1) \) so that \(g_{i_1} = h' g_{i_1} \). Therefore \(s^{g_{i_0}} = s^{g_0 g_{i_0}} = s^{g_{i_0}} \). Continuing, we see that the action of \(g \in G \) simply permutes the elements of \(s + s^g + ... + s^{g_{n-1}} \). We need only show that \(\{g_{i_0}, g_{i_1}, ..., g_{i_{n-1}} \} \) are distinct representatives of the right cosets of \(H \) in \(G \).

Suppose \(g_{i_a} \) and \(g_{i_b} \) are in the same right coset. Then there is a \(g_j (0 \leq j \leq n-1) \) and \(h_1, h_2 \in H \) so that \(g_{i_a} = h_1 g_j \) and \(g_{i_b} = h_2 g_j \). From before, there exists \(h', h'' \) so that \(g_{a g} = h' g_{i_a} \) and \(g_{b g} = h'' g_i \) where \(g_a, g_b \) are distinct in \(\{g_0, g_1, ..., g_{n-1} \} \). Consequently, \(g_{a g} = h' g_{i_a} = h' h_1 g_j \) and \(g_{b g} = h'' g_{i_b} \). That is, \(g_a = h' h_1 g_j g^{-1} \) and \(g_b = h'' h_2 g_j g^{-1} \) which puts \(g_a \) and \(g_b \) in the same right coset of \(H \) in \(G \), a contradiction.

Thus, \(\{g_{i_0}, g_{i_1}, ..., g_{i_{n-1}} \} \) are distinct representatives of the right cosets of \(H \) in \(G \).

We have shown that \((R')^G = \{s + s^g + ... + s^{g_{n-1}} | s \in S^H \}\).

But the mapping of \(S_i^H \) onto \((R')^G \) given by \(s \rightarrow s + s^g + ... + s^{g_{n-1}} \) is a
Jordan automorphisms on direct sums of simple rings

Jordan isomorphism. That is, \((R')^G \cong_j S^H_i\). But by Theorem 8, \(S^H_i\) is a direct sum of at most \(|H| = |G|/n\) simple Jordan rings. This completes the proof.

References

Northern Illinois University
Dekalb, Illinois 60115
U.S.A.