ON CHARACTERS OF η-RELATED TENSORS IN COSYMPLECTIC AND SASAKIAN MANIFOLDS (2)*

Sang-Seup Eun

0. Introduction

A $(2n+1)$-dimensional differentiable manifold M is called to have a cosymplectic structure if there is given a positive definite Riemannian metric g_{ij} and a triplet $(\varphi_k^i, \xi^j, \eta_k)$ of $(1,1)$ type tensor field φ_k^i, vector field ξ^j and 1-form η_k in M which satisfy the following equations

\begin{align}
\varphi_j^k \varphi_i^h &= -\gamma_{jh}^{\ h}, \quad \varphi_j^i \xi^j = 0, \quad \eta_i \varphi_j^i = 0, \quad \eta_i \xi^i = 1, \\
g_{ij} \varphi_j^k \varphi_i^t &= \gamma_{ji}, \quad \eta_i = g_{ihk} \xi^h,
\end{align}

where

\begin{align}
\gamma_{ji} &= g_{ji} - \eta_j \eta_i, \quad \gamma_{j}^{\ h} = g^{ht} \gamma_{tj},
\end{align}

and

\begin{align}
\nabla_k \varphi_j^i &= 0, \quad \nabla_k \eta_j = 0,
\end{align}

where ∇_k indicates the covariant differentiation with respect to g_{ij}. By virtue of the last equation of (0.1), we shall write γ^h instead of ξ^h in the sequel. The indices h, i, j, k, \ldots run over the range $\{1, 2, \ldots, 2n+1\}$. In the present paper, we define an η-projective vector field v^h in a cosymplectic manifold M by the condition

\begin{align}
\mathcal{L}_{v^h} \left[j_i \right] &= \nabla_j v^h + v^t K_{tji}^{\ h} = p_{j^i}^{\ h} + \rho_i \gamma_{ji}^{\ h}
\end{align}

for a certain covector field ρ_i, where $\left\{ j_i \right\}$, $K_{tji}^{\ h}$ and \mathcal{L}_{v^i} are the Christoffel symbols formed with g_{ij}, the curvature tensor and the Lie derivation with respect to v^i on M respectively.

The purpose of the present paper is to investigate the properties of η-projective vector fields in a compact cosymplectic manifold.

*) This research is supported by Korea Science and Engineering Foundation Research Grant 1983.
Received December 1, 1983.

- 121 -
1. \(\eta\)-projective vector fields in a cosymplectic manifold

In a \((2n+1)\)-dimensional cosymplectic manifold \(M\) with the cosymplectic structure \((\varphi, \eta, g)\), we easily obtain the following relations.

\[
(1.1) \quad K_{kij}^i \eta_i = 0, \quad K_{ji}^i \eta_j = 0
\]

by virtue of the Ricci identity with respect to \(\eta^i\), where \(K_{ji}\) is the Ricci tensor of \(M\). Moreover using the Ricci identity with respect to \(\varphi_i^h\), we easily see that \(K_{jil}^i \varphi_i^h + K_{lij}^i \varphi_i^h = 0\) and from which,

\[
(1.2) \quad K_{jil}^i \varphi_i^h + K_{lij}^i \varphi_i^h = 0.
\]

Since

\[
(1.3) \quad K_{tjis}^i \varphi_i^h = \frac{1}{2} (K_{tjis} - K_{sjit}) \varphi_i^h = -\frac{1}{2} K_{tjis} \varphi_i^h,
\]

we obtain

\[
(1.4) \quad \varphi_i^h K_{tjis}^h = 2K_{jil}^i \varphi_i^h.
\]

In a previous paper (Eum, [1]), we proved that if \(M\) is a cosymplectic manifold of constant curvature with respect to \(\gamma_{ji}\), then the curvature tensor of \(M\) is of the form:

\[
(1.5) \quad K_{kij}^h = \frac{K}{2n(2n-1)} (\gamma_k^i \gamma_{ji} - \gamma_j^i \gamma_{ki}),
\]

\(K\) being the constant scalar curvature.

If we substitute (1.5) into (0.4), we obtain

\[
(1.6) \quad \nabla_h \nabla_j \gamma^i + \frac{K}{2n(2n-1)} \varphi_i^h (\gamma_k^i \gamma_{kj} - \gamma_k^j \gamma_{ki}) = \gamma_k^i \gamma_h^j + \gamma_j^i \gamma_k^h.
\]

In this place, we consider a system of partial differential equation

\[
(1.7) \quad \nabla_h \nabla_j \gamma^i + \frac{K}{2n(2n-1)} (2\gamma_{jh} \gamma_k^j + \gamma_{kh} \gamma_j^k + \gamma_{kj} \gamma_p^h) = 0
\]

which is obtained by the substitution into (1.6) of

\[
(1.8) \quad \varphi^h = -\frac{n(2n-1)}{K} \gamma^h.
\]

The integrability condition of (1.7) is given by

\[
(1.9) \quad \nabla_h \nabla_j (\nabla_h \nabla_j \gamma^i) - \nabla_j \nabla_h (\nabla_h \nabla_j \gamma^i) = -K_{ijk}^i \nabla_j \gamma_h^i - K_{lij}^i \nabla_k \gamma_i^h - K_{lik}^i \nabla_j \gamma_k^h.
\]

If we assume that \(\gamma_i^h \gamma_i^j = 0\), then the condition (1.9) is satisfied by
On characters of \(\eta \)-related tensors in cosymplectic and Sasakian manifolds (2) 123

(1.5) and (1.7). In this case we obtain

\[
\mathcal{L}_p \left[\frac{h}{k_j} \right] = \nabla_h \nabla_j \rho^h + \rho^h K_{kji}^h = -\frac{K}{n(2n-1)} (\gamma^h p_j + \gamma^j p_k)
\]

by virtue of (1.5) and (1.7), where \(\mathcal{L}_p \) indicates the Lie derivation with respect to \(\rho^h \).

Thus we have the following

Theorem 1.1. Let \(M \) be a cosymplectic manifold of constant curvature with respect to \(\gamma_{ji} \). In this case, if \(\rho^i \) in \(M \) belongs to the distribution orthogonal to \(\eta \), that is, \(\rho_i \eta^j = 0 \), then \(\rho^i \) is an \(\eta \)-projective vector field locally and the associated vector of \(\rho^i \) is given by \(-\frac{K}{n(2n-1)} \rho^i \), \(K \) being the constant scalar curvature.

By contractions in (0.4), find

(1.11) \[\nabla_j \nabla_i \mathcal{v}^i = (2n+1) \rho_j - (\rho_i \eta^j) \eta_i \]

and

(1.12) \[\nabla_i \nabla_j \mathcal{v}^i = \mathcal{v}^i K_{ji} + (2n+1) \rho_i - (\rho_i \eta^j) \eta_i. \]

Transvecting (0.4) with \(\eta_h \) and taking account of (0.2), (0.3) and (1.1), we easily see that

(1.13) \[\nabla_j \nabla_i (\mathcal{v}^i \eta_i) = 0. \]

Therefore in a compact orientable cosymplectic manifold \(M \), we obtain

(1.14) \[\mathcal{v}^i \eta_i = c \]

c being a constant (Yano, [5]), and from which

(1.15) \[\mathcal{L}_c \eta_i = 0. \]

Substituting (0.4) into the formula (Yano [5])

\[
(1) \quad \mathcal{L}_c K_{kji}^h = \nabla_k \mathcal{L}_c \left[\frac{h}{ji} \right] - \nabla_j \mathcal{L}_c \left[\frac{h}{ki} \right]
\]

we obtain

(1.16) \[\mathcal{L}_c K_{kji}^h = (\nabla_k \rho_j - \nabla_j \rho_k) \gamma^h_{ji} + (\nabla_k \rho_i) \gamma^h_{ji} - (\nabla_j \rho_i) \gamma^h_{ki}, \]

and from which

(1.17) \[\mathcal{L}_{\mathcal{v}} K_{ji} = \nabla_i \rho_j - 2n \nabla_j \rho_i - \eta^i \left((\nabla_i \rho_j) \eta_j + (\nabla_i \rho_i) \eta_j \right) + \eta^i (\nabla_j \rho_i) \eta_i. \]

Using the relation \(\mathcal{L}_{\mathcal{v}} K_{ji} = \mathcal{L}_{\mathcal{v}} K_{ij} \), we obtain
(1.18) \((2n+1)(V_i p_j - V_j p_i) = \eta^i \{(V_i p_i) \eta_j - (V_j p_j) \eta_i \}\).

Transvecting (1.18) with \(\eta^i\), we obtain

(1.19) \((2n+1) \eta^i V_i p_j - 2n V_j (p_i \eta^i) = \mu \eta_j\),

where we have put

(1.20) \(\mu = \eta^i (V_i p_i) \eta^i\).

We consider on the case that \(M\) is a compact cosymplectic manifold. Taking account of the second equation of (1.1) and (1.15), we obtain

(1.21) \(\eta_h \mathcal{L}_v K^h = \eta_h \mathcal{L}_v(K_h \mathcal{G}^{th}) = 0\).

Substituting (1.17) into (1.21), we obtain

(1.22) \((2n-1) V_h (p \eta^h) = \eta_h K_{ht} \mathcal{G}^{th}\)

by virtue of (1.15).

Transvecting (1.22) with \(\eta^h\) and taking account of (1.1) and (1.20), we see that

(1.23) \(\mu = 0\).

Substituting (1.23) into (1.19), we obtain

(1.24) \((2n+1) \eta^i V_i p_j = 2n V_j p_i\),

where we have put

(1.25) \(\rho = p_i \eta^i\).

Substituting (1.16) into the equation

\(\varphi^{st} [(\mathcal{L}_v K^{st}) \eta^j + K_{ts}^h \mathcal{L}_v \eta^j] = 0\),

which is obtained from the first equation of (1.1), and taking account of (0.1), (1.25) and the fact that \(\varphi^{st} = -\varphi^{st}\), we obtain

(1.26) \(\varphi^{st} K_{ts}^h \mathcal{L}_v \eta^j = 2 \varphi^{st} V_i \rho\).

Substituting (1.17) into the equation which is obtained from the second equation of (1.1)

(1.27) \(2 \varphi^{st} [(\mathcal{L}_v K^{st}) \eta^j + K_{st} \mathcal{L}_v \eta^j] = 0\)

and taking account of (1.23) and (1.25), we obtain

(1.28) \(2 \varphi^{ht} K_{jt} \mathcal{L}_v \eta^j = 2(2n-1) \varphi^{ht} V_i \rho\).

Taking account of (1.3), (1.26) and (1.28), we obtain
On characters of τ-related tensors in cosymplectic and Sasakian manifolds (2)

(1.29)
$(n-1)\varphi^{ht}p_{,t}=-0.$

Transvecting (1.29) with φ_{hk} and taking account of the fact that $\eta^{t}p_{,t}=-0$ we obtain

(1.30)
$(n-1)p_{,t}=-0.$

Thus we see that if $n>1$, then $p=\text{constant}$.

On the other hand, if we transvect (1.11) with η^{i}, then we have $p_{,t}(v\eta^{t})=2n\rho$, where we have put $v=\nabla_{v}v'$. Then by the Green's theorem, we see that if $n>1$, then

(1.31)
$p=0.$

Next, we investigate on the case of $n=1$, that is, $2n+1=3$. It is well known that the conformal curvature tensor of Weyl vanishes identically in a 3-dimensional Riemannian manifold. Therefore we have the following formula in the case of $n=1$:

(1.32)
$K_{kij}^{i}+K_{kij}^{i}K_{ij}+g_{ki}K_{j}^{j}g_{j}^{j}-K_{kij}^{i}-K_{j}^{j}-\frac{K}{2}(g_{ki}g_{j}^{j}-g_{ji}g_{k}^{k})=0.$

Transvecting (1.32) with η_{i}^{j}, we obtain

(1.33)
$K_{kij}^{i}=-\frac{K}{2}\gamma_{ki}$

by virtue of (1.1).

Substituting (1.33) into (1.32), we obtain

(1.34)
$K_{kij}^{i}=\frac{K}{2}(\gamma_{k}^{h}\gamma_{j}^{j}-\gamma_{j}^{h}\gamma_{k}^{k}).$

Thus we have the following (Eum, [2])

THEOREM 1.2. A 3-dimensional cosymplectic manifold with constant scalar curvature K is a manifold of constant curvature with respect to γ_{ji}.

In the case of $n=1$, we obtain

(1.35)
$p_{,t}=K_{kt}\mathcal{L}_{v}\eta^{t}$

by virtue of (1.15) and (1.22).

Substituting (1.33) into (1.35) and taking account of the fact that $\eta_{i}\mathcal{L}_{v}\eta^{t}=0$, we see that

(1.36)
$p_{,t}=\frac{K}{2}g_{kt}\mathcal{L}_{v}\eta^{t}$.

Substituting (0.4) into the well known formula:

\[\mathcal{L}_v(\nabla_j \eta^k) - \nabla_j (\mathcal{L}_v \eta^k) = (\mathcal{L}_v \{ h_{ji} \}) \eta^i, \]

we easily see that

\[-\nabla_j (\mathcal{L}_v \eta^k) = \rho \gamma_j^k. \]

and from which

\[\nabla_i (\mathcal{L}_v \eta^i) = -2\rho \]

by virtue of the fact that \(n = 1. \)

If the scalar curvature \(K \) is non-zero constant, then operating \(\nabla_j \) to (1.36) and taking account of (1.37), we obtain

\[\nabla_j \nabla_k \rho + \frac{K}{2} \rho \gamma_{jk} = 0, \]

and from which

\[\nabla_i \nabla_i \rho + K \rho = 0. \]

Under the assumption that \(K \) is non-zero constant, if we take account of (1.15), (1.17) and (1.33), then we obtain

\[\frac{K}{2} \mathcal{L}_v g_{ji} = \nabla_i \rho_j - 2\nabla_j \rho_i - \eta^i \{(\nabla_i \rho_j) \eta_j + (\nabla_j \rho_i) \eta_i\} + \rho \eta_i, \]

where \(\rho \) is defined by (1.25).

Substituting (1.41) into the identity:

\[\mathcal{L}_v \{ h_{ji} \} = \frac{1}{2} g^{hk}(\nabla_j \mathcal{L}_v g_{ki} + \nabla_i \mathcal{L}_v g_{kj} - \nabla_k \mathcal{L}_v g_{ij}), \]

and transvect the result with \(\eta^i \), we obtain

\[K \rho \gamma_{jk} = \eta^i \nabla_i \rho_j - 2\eta^i \nabla_i \rho_j \eta_j - \eta^i \{(\nabla_i \nabla_j \rho) \eta_j + \eta^i (\nabla_i \nabla_j \rho) \eta_j\}, \]

where we have used the relation

\[\eta^i \nabla_i \rho = 0 \]

which is obtained from (1.39).

Transvecting (1.42) with \(g^{ij} \) and taking account of (1.25) and (1.43), we obtain

\[2K \rho = -\eta^i \nabla_i \rho. \]

Substituting \(\nabla_i \nabla_i \rho = \nabla_i \nabla_i \rho - K \rho \) into (1.44), we obtain

\[2K \rho = -\nabla_i (\eta^i \nabla_i \rho). \]
On characters of η-related tensors in cosymplectic and Sasakian manifolds (2) 127

Substituting (1.24) into (1.45), we obtain

\begin{equation}
3K\rho = -\nabla_i\rho^i\rho.
\end{equation}

Comparing (1.40) with (1.46), we obtain in the case of $n=1$ also

\begin{equation}
\rho = 0
\end{equation}

by virtue of the assumption $K \neq 0$.

Taking account of (1.31) and (1.47), we have the following

Theorem 1.3. If a compact cosymplectic manifold M of dimension $2n+1$ $(n \geq 1)$ admits an η-projective vector field v^i and the scalar curvature K of M is non-zero constant, then the associated vector p^i of v^i belongs to the distribution orthogonal to η^i, that is, $p_i\eta^i=0$.

2. Lie derivations with respect to an η-projective vector in a cosymplectic manifold

In the present section, we calculate the Lie derivations of some geometrical objects in the cosymplectic manifold M admitting an η-projective vector field v^i.

Substituting (1.31) into (1.11), we obtain

\begin{equation}
\nabla_j v = (2n+1)p_j,
\end{equation}

where $v=\nabla_i v^i$. Thus p_i is a gradient vector.

Substituting the fact that $\nabla_j p_i = \nabla_i p_j$ into (1.16), we obtain

\begin{equation}
\mathcal{L}_v K_{ji} = (\nabla_k p_i)\gamma_j^k - (\nabla_j p_i)\gamma_k^k.
\end{equation}

Substituting (1.23) and (1.31) into (1.19), we obtain

\begin{equation}
\eta^i \nabla_i p_j = 0.
\end{equation}

Thus we see from (1.17) that

\begin{equation}
\mathcal{L}_v K_{ji} = - (2n-1)\nabla_j p_i,
\end{equation}

by virtue of (1.31), (2.1) and (2.3).

Substituting (0.4) into the formula

\begin{equation}
\nabla_k \mathcal{L}_v \epsilon_{ji} = \nabla_k (\nabla_j v_i + \nabla_i v_j),
\end{equation}

we obtain

\begin{equation}
\nabla_k \mathcal{L}_v \epsilon_{ji} = 2p_k \gamma^i_{ji} + p_j \gamma^k_{ki} + p_i \gamma^i_{jk}
\end{equation}
We define a tensor field G_{ji} on M by

$$G_{ji} = K_{ji} - \frac{K}{2n} \gamma_{ji},$$

where K is the scalar curvature of M, then we see easily that

$$G_{ji} = G_{ij}, \quad G_{ji} g^{ji} = G_i = 0, \quad \gamma^i G_{ji} = 0.$$

Denoting the Lie derivation with respect to η by \mathcal{L}_η in M, we obtain

$$\mathcal{L}_\eta \{ h \} = \nabla_j \nabla_i \eta^h + \eta^i K_{jli}^h = 0$$

and from which

$$\mathcal{L}_\eta K_{jli}^h = \eta^i \nabla_t K_{jli}^h = 0.$$

Contracting with respect to h and k, we obtain

$$\eta^i \nabla_t K_{jli} = 0.$$

We define an η–projective curvature tensor by

$$P_{kji}^h = K_{kji}^h - \frac{1}{2n-1} (\gamma_j^h K_{kii} - \gamma_j^h K_{kii}),$$

then this tensor field satisfies

$$P_{kji}^h = -P_{jki}^h, \quad P_{kji}^t = 0, \quad P_{tji}^t = 0, \quad P_{kji}^h + P_{ikj}^h + P_{jik}^h = 0$$

and

$$P_{kji}^h g^{ji} = \frac{2n}{2n-1} G_k^h, \quad P_{kji}^h \eta_h = 0.$$

If the scalar curvature K is non-zero constant, then using

$$\nabla^j K_{ji} = \frac{1}{2} \nabla_i K = 0, \quad \nabla^i K_{kji}^t = \nabla_k K_{jli}^i - \nabla_j K_{kli}$$

and

$$\eta^i \nabla_k K_{jli} = 0$$

which is obtained from (2.9), we see that

$$\nabla^k P_{kji}^h = \frac{2(n-1)}{2n-1} \nabla^h G_{ji} - \nabla_i G_j^h.$$
On characters of \(\eta \)-related tensors in cosymplectic and Sasakian manifolds (2)

Calculating \(\mathcal{L}_\gamma G_{ji} \) and taking account of (2.4) and (2.7), we can see that

\[
(2.15) \quad \mathcal{L}_\gamma G_{ji} = -(\nabla_j w_i + \nabla_i w_j)
\]

if the scalar curvature is non-zero constant, where we have put

\[
(2.16) \quad w^k = \frac{2n-1}{2} \eta^k + \frac{K}{2n} v^k.
\]

Substituting (2.2) and (2.4) into the Lie derivation of (2.10) and taking account of (1.15), we obtain

\[
(2.17) \quad \mathcal{L}_\gamma P_{kji} = \frac{1}{2n-1} \left\{ \left[\mathcal{L}_\gamma (\eta^i v^h) \right] K_{ki} - \left[\mathcal{L}_\gamma (\eta^i v^h) \right] K_{ji} \right\} = \frac{1}{2n-1} \left\{ \eta_i \eta^i (\eta^j v^h) K_{ki} - \eta_k \eta^j (\eta^i v^h) K_{ji} \right\}.
\]

We assume that the scalar curvature \(K \) is non-zero constant. In this case, we obtain

\[
(2.18) \quad (\eta^k \mathcal{L}_\gamma P_{kji}) g^{ji} = 0
\]

by virtue of (0.4) and (1.1).

From the first equation of (2.12), we obtain

\[
(\mathcal{L}_\gamma P_{kji}) g^{ji} + P_{kji} \mathcal{L}_\gamma g^{ji} = \frac{2n}{2n-1} \mathcal{L}_\gamma G^k
\]

and from which

\[
(2.19) \quad (\eta^k \mathcal{L}_\gamma P_{kji}) g^{ji} + (\eta^k P_{kji}) \mathcal{L}_\gamma g^{ji} + P_{kji} (\eta^k \mathcal{L}_\gamma g^{ji}) = \frac{2n}{2n-1} \eta^k \mathcal{L}_\gamma G^k.
\]

Substituting (2.6), (2.14) and (2.18) into (2.19), we obtain

\[
(2.20) \quad \left[\frac{2n}{2n-1} \eta^k \mathcal{L}_\gamma G^k - \left\{ \frac{2(n-1)}{2n-1} \eta^h G_{ji} - \nabla_j G^h_{ji} \right\} \mathcal{L}_\gamma g^{ji} + \frac{2n}{2n-1} G^h_{ji} \right] w_k = 0.
\]

3. A decomposition of an \(\eta \)-projective vector in a compact cosymplectic manifold with non-zero constant scalar curvature

In the present section, we use for briefness the following notations:

\[
(3.1) \quad I_1 = \int_M G_{ji} h^j w^h dV, \quad I_2 = \int_M (\nabla_k G_{ji}) (\mathcal{L}_\gamma g^{ji}) w^k dV,
\]
$I_3 = \int_M (V^j G_{jk})(L_x g^{ji}) w^k dV$, $I_4 = \int_M (\nabla^k L_x G_k^h) w dV$,
where dV denotes the volume element of M, and

(3.2) \[\alpha = (V^i w^i)^2, \quad \beta = (V_j w_i + V^j w_i)(V^t w^i + V^i w^t). \]

Let M be a compact cosymplectic manifold with non-zero constant scalar curvature and let M admits an η–projective vector field v^i defined by (0.4). In this case, we shall calculate the values of the integrals (3.1) following same ways as the processes of [3].

By using the identity

\[V_j A^j = V^j V_j p_i - K t_{ji} p^i, \]

where $p_i = v^j p$ and $A = g^{ji} V_j v_i$, and taking account of (1.31) and (2.7), we obtain

\[I_1 = -\int_M (V^i A^j p^j) w^i dV + \int_M (V^i V_j p_i) w^j dV - \frac{K}{2n} \int_M p_t w^i dV. \]

Taking account of (2.16) and the Green's theorem, we obtain

\[
\begin{align*}
-\int_M (V^i A^j p) w^i dV &= \int_M (A^j p^j) (V^i w^i) dV \\
&= \frac{2}{2n-1} \int_M \alpha \, dV - \frac{K}{n(2n-1)} \int_M (V_i v^i) (V^i w^i) dV \\
&= \frac{2}{2n-1} \int_M \alpha \, dV + \frac{K}{n(2n-1)} \int_M (V_i v^i) w^i dV \\
&= \frac{2}{2n-1} \int_M \alpha \, dV + \frac{(2n+1)K}{n(2n-1)} \int_M p_t w^i dV.
\end{align*}
\]

Consequently, we have

\[I_1 = \frac{2}{2n-1} \int_M \alpha \, dV + \int_M (V^i V_j p_i) w^j dV + \frac{(2n+3)K}{n(2n-1)} \int_M p_t w^i dV. \]

By using

\[V^i (V_i v_i + V^i v_j) = V^j L_x g^{ji} = (2n+3) p_i \]

we see that

\[
\begin{align*}
\int_M (V^i V_j p_i) w^j dV &+ \frac{(2n+3)K}{2n(2n-1)} \int_M p_v w^i dV \\
&= \frac{1}{2n-1} \left[\int_M \left\{ V^j \left(\frac{2n-1}{2} V_i p_i + \frac{K}{2n} V_i v_i \right) \right\} w^i dV \\
&\quad + \int_M \left\{ V^i \left(\frac{2n-1}{2} V_j p_j + \frac{K}{2n} V_i v_j \right) \right\} w^i dV \right]
\end{align*}
\]
On characters of η-related tensors in cosymplectic and Sasakian manifolds (2) 131

\[
\begin{align*}
&= \frac{1}{2n-1} \int_M \mathcal{P}^j (\mathcal{P}_j \omega_i + \mathcal{P}_i \omega_j) \omega^i \text{d}V \\
&= \frac{1}{2n-1} \left[\int_M \mathcal{P}^j ((\mathcal{P}_j \omega_i + \mathcal{P}_i \omega_j) \omega^i) \text{d}V \\
&\quad - \int_M (\mathcal{P}_j \omega_i + \mathcal{P}_i \omega_j) \mathcal{P}^j \omega^i \text{d}V \right] \\
&= -\frac{1}{2(2n-1)} \int_M \beta \text{d}V.
\end{align*}
\]

Substituting this equation into above equation, we obtain

\[
(3.3) \quad I_1 = -\frac{2}{2n-1} \int_M \alpha \text{d}V - \frac{1}{2(2n-1)} \int_M \beta \text{d}V.
\]

The integral I_2 is expressed by

\[
I_2 = \int_M \mathcal{P}_h [G_{ji} (\mathcal{L}_v \mathcal{L}_h \mathcal{G}^{ji}) \omega^h] \text{d}V - \int_M G_{ji} (\mathcal{P}_h \mathcal{L}_v \mathcal{G}^{ji}) \omega^h \text{d}V \\
- \int_M (G_{ji} \mathcal{L}_v \mathcal{G}^{ji}) \mathcal{P}_h \omega^h \text{d}V.
\]

Substituting (2.6) into this equation, we obtain

\[
I_2 = 2 \int_M G_{ji} \mathcal{P}_i \omega^i \text{d}V - \int_M \{\mathcal{L}_v (G_{ji} \mathcal{G}^{ji}) - g^{ji} \mathcal{L}_v G_{ji}\} \mathcal{P}_i \omega^i \text{d}V \\
= 2 I_1 - \int_M g^{ji} (\mathcal{P}_j \omega_i + \mathcal{P}_i \omega_j) \mathcal{P}_i \omega^i \text{d}V.
\]

Hence we get

\[
(3.4) \quad I_2 = 2 I_1 - 2 \int_M \alpha \text{d}V.
\]

Since

\[
(3.5) \quad g^{kj} \mathcal{L}_v (\mathcal{P}_k G_{ji}) = g^{kj} [\mathcal{P}_k \mathcal{L}_v G_{ji} - (\mathcal{L}_v \{t_{kj}\} G_{ji} - (\mathcal{L}_v \{t_{ki}\}) G_{ji}]] \\
= \mathcal{P}_j \mathcal{L}_v G_{ji} - 3 G_{ji} \mathcal{P}_i,
\]

and

\[
(3.6) \quad \int_M (\mathcal{P}_j \mathcal{L}_v G_{ji}) \omega^i \text{d}V = -\int_M [\mathcal{P}_j (\mathcal{P}_j \omega_i + \mathcal{P}_i \omega_j)] \omega^i \text{d}V = \frac{1}{2} \int_M \beta \text{d}V,
\]

which is obtained from (2.15), the integral I_3 is expressed by

\[
I_3 = \int_M \{\mathcal{L}_v [\mathcal{P}_j G_{ik}) \mathcal{G}^{ji}] \omega^h \text{d}V - \int_M g^{ji} (\mathcal{L}_v \mathcal{P}_j G_{ik}) \omega^h \text{d}V \\
= -\int_M (\mathcal{P}_j \mathcal{L}_v G_{ji}) \omega^i \text{d}V + 3 \int_M G_{ji} \mathcal{P}_i \omega^i \text{d}V.
\]
Hence substituting (3.6) into this equation, we obtain

\[(3.7) \quad I_3 = -\frac{1}{2} \int_M \beta dV + 3I_1.\]

Lastly, we calculate the integral \(I_4\).

\[
I_4 = \int_M \left[\nabla^k \left(\mathcal{L}_v \left(G_{kj} g^{jk} \right) \right) \right] w_k dV
\]

\[
= \int_M \left(\nabla^k \mathcal{L}_v G_{kj} \right) w_j dV + \int_M \left[\nabla^k \left(G_{kj} \mathcal{L}_v g^{jk} \right) \right] w_k dV.
\]

Substituting (3.6) into this equation and taking account of (2.6), we obtain

\[
I_4 = \frac{1}{2} \int_M \beta dV - 3 \int_M G_{ij} p^i w^j dV = \frac{1}{2} \int_M \beta dV - 3I_1.
\]

Thus we have

\[(3.8) \quad I_4 = -I_3.\]

Integrating (2.20) over \(M\), we obtain

\[(3.9) \quad 2n(I_1 + I_4) - 2(n-1)I_2 + (2n-1)I_3 = 0.\]

Substituting (3.3), (3.4), (3.7) and (3.8) into (3.9), we obtain

\[(3.10) \quad 2(2n-3) \int_M \alpha dV + \int_M \beta dV = 0.\]

In the case of \(n > 1\), since \(\alpha > 0\) and \(\beta > 0\) over \(M\) we find that

\[(3.11) \quad \alpha = 0, \quad \beta = 0.\]

That is, we obtain

\[(3.12) \quad \nabla_i w^i = 0, \quad \nabla_j w_i + \nabla_i w_j = 0.\]

Therefore \(w^k\) is a Killing vector.

We consider in the case of \(n = 1\). Since \(p_i\) is a gradient vector and \(K\) is non-zero constant, we obtain

\[(3.13) \quad \nabla_i \mathcal{L}_v p_i = 0\]

by virtue of (1.19), (1.20) and (1.47)

Substituting (1.47) and (3.13) into (1.41), we obtain

\[(3.14) \quad \frac{K}{2} \mathcal{L}_v e_{ji} = -\nabla_j p_i;\]

and from which
On characters of \(\eta \)-related tensors in cosymplectic and Sasakian manifolds (2) 133

\((3.15) \)

\[
\frac{K}{2} (\mathcal{V}_j v_i + \mathcal{V}_i v_j) = -\mathcal{V}_j p_i.
\]

(3.15) and the fact that \(\mathcal{V}_j p_i = \mathcal{V}_i p_j \) shows that if we put

\[
w^h = \frac{1}{2} p^h + \frac{K}{2} v^h,
\]

then \(w^h \) is a Killing vector, that is,

\((3.16) \)

\[
\mathcal{V}_j w_i + \mathcal{V}_i w_j = 0.
\]

Thus an \(\eta \)-projective vector \(v^h \) is decomposed in the form

\((3.17) \)

\[
v^h = \frac{2n}{K} \left(w^h - \frac{2n-1}{2} p^h \right),
\]

where \(w^h \) is a Killing vector and \(p_i \) is a gradient vector.

The uniqueness of this decomposition is proved by the following way. In fact if

\[
w^h - \frac{2n-1}{2} p^h = w^h - \frac{2n-1}{2} p^h,
\]

then \(p^h - \nu p^h \) also a Killing vector. On the other hand, since \(p_i - \nu p_i \) is a gradient vector, we see that

\[
\mathcal{V}_j (p_i - \nu p_i) = 0,
\]

and from which

\[
\mathcal{V}_j \mathcal{V}_i (p - \nu p) = 0
\]

where we have put \(\mathcal{V}_i p = p_i, \mathcal{V}_i p = \nu p_i. \)

Since \(M \) is compact and orientable, we see that \(\nu p - \nu p \) is a constant. (Yano, [5]) Thus we obtain \(p_i = \nu p_i. \) Therefore the uniqueness of the decomposition is proved.

Substituting (2.16) into the second equation of (3.12), we obtain

\[
(2n-1) \mathcal{V}_j p_i + \frac{K}{2n} (\mathcal{V}_j v_i + \mathcal{V}_i v_j) = 0.
\]

Operating \(\mathcal{V}_k \) to this equation and taking account of (0.4), we obtain

\((3.18) \)

\[
\mathcal{V}_k \mathcal{V}_i p_i + \frac{K}{2n(2n-1)} (2p_k \nu_{ji} + p_j \nu_{ki} + p_i \nu_{kj}) = 0.
\]

Transvecting (3.18) with \(g^{kj} \), we see that

\((3.19) \)

\[
\mathcal{V}_i \mathcal{V}_i p^h = -\frac{(2n+3)K}{2n(2n-1)} p^h.
\]
Therefore $K > 0$ since K is non-zero constant. (Yano, [5])

Taking account of (0.4) and (3.16), we easily obtain

$$(3.20) \quad \mathcal{L}_w \{h\}_{ji} = \frac{2n-1}{2} \mathcal{L}_p \{h\}_{ji} + \frac{K}{2n} \mathcal{L}_v \{h\}_{ji},$$

where \mathcal{L}_w and \mathcal{L}_p indicate the Lie derivations with respect to w^h and p^h respectively.

Since w^h is a Killing vector, we see that

$$\mathcal{L}_p \{h\}_{ji} = -\frac{K}{n(2n-1)} \mathcal{L}_v \{h\}_{ji}$$

by virtue of the identity (III) of section 1 and (3.20). Thus we obtain

$$\mathcal{L}_p \{h\}_{ji} = -\frac{K}{n(2n-1)} (\pi_{ji}^h + \pi_{ij}^h).$$

Therefore, taking account of above results, we have the following

Theorem 3.1. Let M be a compact $(2n+1)$ $(n \geq 1)$ dimensional cosymplectic manifold with non-zero constant scalar curvature K. If M admits an η-projective vector field v^h defined by (0.4), then $K > 0$ and v^h is decomposed uniquely in the form:

$$v^h = \frac{2n}{K} \left(w^h - \frac{2n-1}{2} p^h \right),$$

where w^h is a Killing vector field and p^h is the associated vector field of v^h. Moreover p^h is also an η-projective vector field and the associated vector field of p^h is proportional (with constant coefficient $-\frac{K}{n(2n-1)}$) to p^h itself.

Substituting (3.18) into the identity

$$V_k V_j p^h - V_j V_k p^h = K_{kji} p^i,$$

we obtain

$$(3.21) \quad U_{kji}^h p^i = 0,$$

where we have put

$$(3.22) \quad U_{kji}^h = K_{kji}^h - \frac{K}{2n(2n-1)} (\gamma_k^h \gamma_{ji} - \gamma_j^h \gamma_{ki}).$$

Since w^h is a Killing vector field, we obtain

$$(3.23) \quad \mathcal{L}_v g_{ji} = (V_j v_i + V_i v_j) = -\frac{2n(2n-1)}{K} V_j p^i$$
by virtue of (2.16), and from which

\[\mathcal{L}_{\omega}g^{ij} = \frac{2n(2n-1)}{K} \mathcal{V}^i p^j. \]

Substituting (2.24) into \(\mathcal{L}_{\omega}T^i = \mathcal{L}_{\omega}(g^{hi}T_i), \) we obtain

\[\mathcal{L}_{\omega}T^i = 0 \]

by virtue of (1.15), (1.31) and (2.24).

From (3.25), we obtain

\[\mathcal{L}_{\omega}T^i = 0. \]

Taking account of (1.15), (2.2), (3.22), (3.23) and (3.26), we see that

\[\mathcal{L}_{\omega}U_{ki} = 0. \]

If we substitute (3.27) into the identity:

\[\mathcal{L}_{\omega}\mathcal{V}iU_{ki} = \mathcal{V}i\mathcal{L}_{\omega}U_{ki} \]

\[= U_{ki}i\mathcal{L}_{\omega}\left[h \right] - U_{li}i\mathcal{L}_{\omega}\left[k \right] - U_{li}i\mathcal{L}_{\omega}\left[t \right] - U_{jki}i\mathcal{L}_{\omega}\left[l \right] - U_{kij}i\mathcal{L}_{\omega}\left[l \right], \]

then, we obtain

\[\mathcal{L}_{\omega}\mathcal{V}iK_{kj} = -(2U_{kij}p_i + U_{lij}p_k + U_{ki}p_j + U_{kj}p_i) \]

by virtue of (3.21).

Transvecting this equation with \(p^k \) and taking account of (3.21), we obtain

\[\mathcal{L}_{\omega}\mathcal{V}iK_{ki} = -U_{lij}p_k p^k. \]

Contracting with respect to \(k \) and \(i \) in (3.28), we obtain

\[\mathcal{L}_{\omega}\mathcal{V}iK_{ji} = -G_{ij}p_i, \]

and from which

\[\mathcal{L}_{\omega}\mathcal{V}iK_{ji} = -G_{ij}p_i. \]

Thus by (3.21), (3.22), (3.29) and (3.31), we have the following

THEOREM 3.2. Under the same assumption for \(M \) as the theorem 3.1, we have the following propositions.

If one of the following two conditions is satisfied, then \(M \) is a cosymplectic manifold of constant curvature with respect to \(\gamma_{ji}. \)

1. The Lie algebra of all \(\eta \)-projective vectors is transitive in \(M. \)
(2) M is a symmetric manifold. Moreover if M is a manifold of Ricci parallel, then M is an η-Einstein manifold.

4. Hypersurfaces of a cosymplectic manifold admitting an η-projective vector field

We consider the distribution orthogonal to η^h in a $(2n+1)$-dimensional cosymplectic manifold M.

If X and Y are vectors contained in such a distribution, then $[X, Y] = \nabla_X Y - \nabla_Y X$ is also contained in such a distribution. Therefore by a theorem of Frobenius, such a $2n$-dimensional distributions is integrable. Moreover, such a distribution is evidently parallel. Therefore M is locally a product manifold of a $2n$-dimensional Riemannian manifold and a 1-dimensional Riemannian manifold. If M is complete and simply connected, then there exists a hypersurface M^{2n} of M such that

$$M = M^{2n} \times \mathbb{R}^1,$$

η^h is normal to M^{2n} and M^{2n} is complete and simply connected.

Let the hypersurface M^{2n} is covered by a system of coordinate neighborhoods $\{V; y^a\}$, then M^{2n} is expresses by $x^h=x^h(y^a)$. Denoting $B^h_a = \partial_a x^h$, $(\partial_a = \partial/\partial y^a)$, the induced metric tensor g_{ba} on M^{2n} from that of M is given by $g_{ba} = B^i_b B^j_a g_{ij}$.

Taking account of the fact that $\nabla_b = B^i_b \nabla_j$, ∇_b being the operator of covariant differentiation with respect to g_{ba}, and the Weingarten's formula: $\nabla_b \eta^h = -h^a_b B^h_a$, h^a_b being the second fundamental tensor of M^{2n}, we easily see that $h^a_b = 0$, that is, M^{2n} is a totally geodesic hypersurface of M. Therefore, the Gaussian equation for M^{2n} is given by

$$K_{dcb^a} = K_{hkb} B^h_d B^k_c B^i_b B^j_a,$$

where K_{dcb^a} is the curvature tensor of M^{2n}.

We denote by (B^a_b, η^h) the inverse matrix of the matrix (B^h_b). In this case, an η-projective vector field v^h of M is decomposed in the form

$$v^h = B^h_a u^a + \alpha \cdot \eta^h,$$

where $u^h = B^h_a v^a$ is a covector field of M^{2n}.

Taking account of the fact that $h_{ba} = 0$ and (4.2), we easily verify
the following equation

\[B^h B^j B^a_h (\nabla_k \nabla_j \nu^b + \nu^a K_{b,k}) = \nabla_k \nu^a + u^a K_{e,c} \]

Substituting (4.4) into (4.4), we obtain

\[\mathcal{L}_u \left[\frac{1}{\kappa_k} \right] = \nabla_k \nu^a + u^a K_{e,c} = \delta \frac{a}{D} \frac{a}{D} \frac{a}{D} \frac{a}{D}, \]

where \(t_a = B^a_k \nu^k \) and \(\mathcal{L}_u \) denotes the Lie derivation with respect to \(u^a \) in \(M^{2n} \). Thus we have the following

THEOREM 4.1. Let \(M \) be a \((2n+1)\)-dimensional complete and simply connected cosymplectic manifold. Then \(M \) is a product manifold of a totally geodesic hypersurface \(M^{2n} \) and a 1-dimensional Riemannian manifold \(R^1 \). If \(M \) admits an \(\eta \)-projective vector field \(\nu^k \), then \(M^{2n} \) admits a projective vector field \(u^a \).

On the other hand, transvecting (3.18) with \(B^a_k B^j B^i_a \), we obtain

\[\nabla_k \nu^a + \frac{K}{2n} (2g_{ba} t^b + g_{ca} t^b + g_{ca} t^a) = 0, \]

where \(K \) is the constant scalar curvature of \(M \) and \(t_a = \nabla_a \nu^a \).

Transvecting (4.2) with \(g^{ab} g^{bc} \), we easily verify the fact that the scalar curvature of \(M^{2n} \) is equal to the scalar curvature of \(M \). Taking account of a theorem of Obata ([4]) and (4.6), we obtain the following (cf. Theorem A of [3])

THEOREM 4.2. Let \(M \) be a \((2n+1)\)-dimensional compact, connected and simply connected cosymplectic manifold with non-zero constant scalar curvature \(K \). If \(M \) admits an \(\eta \)-projective vector field \(\nu^h \) then the hypersurface \(M^{2n} \) orthogonal to \(\nu^h \) is globally isometric to a sphere of radius \(\sqrt{2n(2n-1)/K} \) in the Euclidean \((2n+1)\)-space.

5. An \(\eta \)-projective vector field in a Sasakian manifold

If a set \((\varphi, \eta, g)\) of a tensor field \(\varphi \) of type \((1,1)\), a vector field \(\eta \) and a Riemannian metric tensor \(g \) satisfies (0.1), (0.2) and additionally

\[\varphi_{ji} = \frac{1}{2} (\partial_j \eta_i - \partial_i \eta_j) \]

then, such a set is called a contact structure. A manifold with a normal contact structure is called a Sasakian manifold.

It is well known that in a Sasakian manifold, the following equations
are satisfied:

\begin{align}
(5.1) & \quad \nabla_j \eta^i = \varphi_i^i, \quad \nabla_j \varphi_i^i = -g_j \eta^i + \delta_j^i \eta_i, \\
(5.2) & \quad \eta_i K_{kji}^t = \eta_k g_{ji} - \eta_j g_{ki}, \\
(5.3) & \quad K_{jii}^t = 2 \alpha \eta_j.
\end{align}

In the present section, we investigate an η-projective vector field v^h defined by

\begin{equation}
(5.4) \quad \mathcal{L}_v \left\{ \frac{h}{ji} \right\} = \nabla_j v^h + v^i K_{ji}^h = p_j \gamma_i^h + p_i \gamma_j^h
\end{equation}

in a Sasakian manifold.

Differentiating (5.4) covariantly, we obtain

\begin{equation}
(5.5) \quad \nabla_k \mathcal{L}_v \left\{ \frac{h}{ji} \right\} = (\nabla_k \gamma_i^h + (\nabla_k \gamma_j^h \gamma_j^h
\end{equation}

\begin{equation}
- p_j (\varphi_k \eta^h + \varphi_k \eta_i) - p_i (\varphi_k \eta^h + \varphi_k \eta_j).
\end{equation}

Substituting (5.5) into the identity:

\begin{equation}
\mathcal{L}_v K_{kji}^h = \nabla_k \mathcal{L}_v \left\{ \frac{h}{ji} \right\} - \nabla_j \mathcal{L}_v \left\{ \frac{h}{ki} \right\},
\end{equation}

we obtain

\begin{equation}
(5.6) \quad \mathcal{L}_v K_{kji}^h = (\nabla_k \gamma_i^h + (\nabla_k \gamma_j^h \gamma_j^h
\end{equation}

\begin{equation}
- p_j (\varphi_k \eta^h + \varphi_k \eta_i) + p_k (\varphi_j \eta^h + \varphi_j \eta_i)
\end{equation}

\begin{equation}
- p_i (2 \varphi_k \eta^h + \varphi_k \eta_j - \varphi_j \eta_k).
\end{equation}

Transvecting (5.6) with η_i, we find

\begin{equation}
(5.7) \quad \eta_i \mathcal{L}_v K_{kji}^h = p_k \varphi_{ji} - p_j \varphi_{ki} - 2 p_i \varphi_{kj}.
\end{equation}

Taking the Lie derivation of the both sides of (5.2), we obtain

\begin{equation}
\eta_i \mathcal{L}_v K_{kji}^t = (\mathcal{L}_v \eta_i) K_{kji}^t + (\mathcal{L}_v \eta_i) g_{ji} - (\mathcal{L}_v \eta_i) g_{ki} + \eta_k \mathcal{L}_v g_{ji} - \eta_j \mathcal{L}_v g_{ki}.
\end{equation}

Substituting (5.7) into this equation, we obtain

\begin{equation}
(5.8) \quad (\mathcal{L}_v \eta_i) K_{kji}^t = -p_k \varphi_{ji} + p_j \varphi_{ki} + 2 p_i \varphi_{kj} + (\mathcal{L}_v \eta_i) g_{ji} - (\mathcal{L}_v \eta_i) g_{ki} + \eta_k \mathcal{L}_v g_{ji} - \eta_j \mathcal{L}_v g_{ki}.
\end{equation}

Transvecting (5.8) with η^h and taking account of (5.2), we obtain

\begin{equation}
(5.9) \quad \mathcal{L}_v g_{ji} = p_i \eta^h \varphi_{ji} + \eta_j \eta^h \mathcal{L}_v g_{ki}.
\end{equation}

Taking account of the symmetric property of $\mathcal{L}_v g_{ji}$ with respect to j and i, we obtain
On characters of η-related tensors in cosymplectic and Sasakian manifolds (2) 139

(5.10) \[2p_i \eta^i \varphi_{ij} + \eta^k \left(\eta_j \mathcal{L}_v g_{ki} - \eta_i \mathcal{L}_v g_{kj} \right) = 0. \]

Transvecting (5.10) with η^i, we find

(5.11) \[\eta^k \mathcal{L}_v g_{kj} = \nu \eta_j, \]

where we have put

(5.12) \[\nu = \eta^k \eta^j \mathcal{L}_v g_{kj}. \]

Substituting (5.11) into (5.9), we see that

(5.13) \[\mathcal{L}_v g_{ij} = \left(p_i \eta^i \right) \varphi_{ij} + V_1 \left(\eta^i \right)^j. \]

Transvecting (5.13) with φ^{ji}, we easily find

(5.14) \[p_i \eta^i = 0 \]

and from which

(5.15) \[\mathcal{L}_v g_{ij} = \nu \eta_i \eta_j \]

by virtue of (5.13).

Operating \mathcal{P}_k to (5.15), we obtain

(5.16) \[\mathcal{P}_k (\mathcal{P}_j v_i + \mathcal{P}_i v_j) = (\mathcal{P}_k \nu) \eta_i \eta_j + \nu (\varphi_{kj} \eta_i + \varphi_{ki} \eta_j). \]

Substituting (5.4) into (5.16) and transvecting the result with $\eta^j \eta^i$, we obtain $\mathcal{P}_k \nu = 0$, that is

(5.17) \[\nu = \text{constant}. \]

On the other hand, substituting (5.14) into the identity:

\[\mathcal{L}_v \{ h \}_{ji} = \frac{1}{2} g^{ht} (\mathcal{P}_j \mathcal{L}_v g_{ti} + \mathcal{P}_i \mathcal{L}_v g_{tj} - \mathcal{P}_i \mathcal{L}_v g_{ij}), \]

and taking account of (5.17), we obtain

(5.18) \[\mathcal{L}_v \{ h \}_{ji} = \nu (\varphi_j^i \eta_i + \varphi_i^j \eta_j). \]

Comparing (5.4) with (5.18), we obtain

(5.19) \[p_i \eta^i + p_i \eta^h = \nu (\varphi_j^i \eta_i + \varphi_i^h \eta_j). \]

Transvecting (5.19) with η_i, we easily see that

\[\nu = 0 \]

by virtue of (5.14), and from which

\[p_i = 0, \quad \mathcal{L}_v \{ h \}_{ji} = 0. \]
Thus we have the following

THEOREM 5.1. In a Sasakian manifold, an \(\eta \)-projective vector field with an associated vector other than the zero vector does not exist.

References

Sung Kyun Kwan University
Seoul 110, Korea