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GENERIC SUBMANIFOLDS OF A QUATERNIONIC PROJECTIVE SPACE
WITH COMMUTATIVE SECOND FUNDAMENTAL FORMS

By Jin Suk Pak

A submanifold M of a quaternionic projective space QP™ of real dimension
4m is called a gemeric submaniyold if the normal space N (M) of M at Pis
always mapped into the tangent space T,.(M) at P under the action of the
quaternionic Kaehlerian structure tensors of the ambient manifold at the same
time (Cf. Y. Shibuya [8]). Any real hypersuface of a quaternionic projective
space is a generic submanifold.

In 1970, Lawson [4] determined real hypersurfaces of QP™ by using the method
of Riemannian fibre bundles which are compatible with the Hopf-fibration
54;'1+3(1)—>QP”1, where §¥*13 (1) denotes the unit sphere of dimension 4m+3.
Recently Shibuyva [8] developed the method of Lawson in the case of generic
submanifolds immersed in QP™. By using the same method the present author
[6], [7] and Kang [7] have studied the following theorems:

THEOREM A. (see [7]). Let M be an n-dimensional complete, generic subm-
anifold of a quaternionic projective space QF (k02% stn flat normal connection.
If (2. 1) appeared in 82 are valid af each point of M and if the mean curvature

vecltor defined of M is paralle! in the normel bundie, then M is of the form

2 (ST (r )X X 8™ (r ),
by - Py=L p=4+3 (U non-negative integer), }?pi:n-&-& ;szl, N
=p+1, where n denote the natural projection of SM+3(1) onto QP™ which is
d'efz'ned by the Hopf-fibration.

THEOREM B. (see [5]). Let M be a complete real hypersurface of QP". If
(2.1)) appeared in 82 are valid at each point of M, then M is of the form

ﬂ(84ﬁ+3(a)><s4ﬂ+5(b))

for some poriion (p, q) of m—1 aund some a,b such thal +i=1.
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For a generic submanifold M of a quaternionic projective space, it is easily
seen from the equation (1.13) of Ricci that there is no relationship between the
flﬁtness of the normal connection of M and the commutativity of the second
fundamental forms.

In the present paper we study generic submanifolds of quaternionic projective
spaces with commutative second fundamental forms and determine such subm-
anifolds by using Theorem B (see Theorem 4).

Manifolds, submanifolds, geometric objects and mappings we dicuss in this
paper will be assumed to be differentiable and of class C™.

1. Generic submanifolds of a quaternionic Kaehlerian manifold

Let M be an (n+p)-dimensional quaternionic Kaehlerian manifold covered
by a system of coordinate neighborhoods {U; yi} (here and in the sequel the
indices &, #, 7, &, t, s run over the range (1, 2, -+, #+p). Then, by definition
there exists a 3-dimensional vector bundle ¥V consisting of tensors of type (1, 1)
over M satisfying the following conditions (1), (2) and (3):

(1) In any coordinate neighborhood U, there is a local base [F, G, H} of ¥V
such that

(1.1) FiF\=-d,, G\Gi=-5,, HH=-3d,

GH)=—H,G}=F, F\G}=-G,Fi=H,, H,Fi=-F/H;=G,,
where F;-, G;. and H; denote the local components of F, G and H in U respe-
ctively.
(2) There is a Riemannian metric tensor gj; such that

1.2) Fﬁ= —F. Gﬁz _ij: Hj;: —H,-J-.
h B
where F,= g,.hF;, G;;=g,G; and H =&t -
(3) For the operator Vj of the covariant differentiation with respect to the
Riemannian connection

h i i
1.3 V,Fi=rG,—q;H,
h i
V6= —r.PJf+pr-H,.,

where p=p.d yi, g=q4d yi and r:r,.dyi are certain local 1-forms defined in U.
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Such a local base {F, G, H} is called a canonical base of the bundle V in U
(see Ishihara [1] etc.).

Let M be an n-dimensional submanifold immersed in M. Then M is covered
by a system of coordinate neighborhoods {U; x%), U=UNM (here and in the
sequel the indices @, b, ¢, d, ¢ - run over the range {1, 2, -, n}). Let M
be represented by y£= y"(x") with respect to local coordinates (yi) inU and (%
in U. We put

Bi=dy (3,=3/3:%

and denote by Ni ¢ mutually orthogonal unit vectors normal to M (here and
in the sequel the indices x, ¥, 2z, #, w - run over the range {n+1, -, a+p}).
Putting
£=8;BiB, &= NN,

they are the induced metric tensors of M and of the normal bundle respectively.

If the transforms by F, G and H of any vector normal to M are always
tangent to M at the same time, then the submanifold M is called a generic
submanifold (see Shibuya [8] etc.). In such case, since the ranks of F, G and
H are all #+p, we have n=3p.

For a generic submanifold M of M, we can put in each coordinate neighbor-
hood U

F\B,=4,B,+6;N,, F,N,=~¢B,
.9 GiB=Y B+ VN, GN;=-TB,
HB'=0'B+6'N', HIN"= -6,

As a conseguence of (1.2), we have from (1.4)
P5a= "% Voa= T pa= O

¢ax=¢m' wa: = ?an’ eax =9:m'

where we have put ¢, =¢,2... ¢“=¢§g‘yx etc.

1.5

Applying F, G, H to (1.4) and using (1.1) and those equations, it follows

that
Bipi= 00+ gipl, W= =0, + T, 606 =—d0+0,+00"

e a’ x

$.6.=0. Tiyri=0, 6:6°=0.
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Vb= 0,780, OF=-8, V0, 40,=-V,+64,
(L.6) U =0,+Tg, TOi=g.+0T.. 0'¢=V,+406.,

Ofe= Vo T =—0, $¥,=-0,

60—V, 0TI, V=0,

J=0, V=0, 0°5=0, $15=0, VHI=0, C=0,
We denote by V, the operator of the covariant differentiation with respect to

the Riemannian connection induced on M from the connection of M. Then the
equations of Gauss and Weingarten are given by
f_ 3 Xari i inf
@n V,B,=h,’N., V,N.=—h, "B
respectively, where A, ; are components of the second fundamental tensor with
. = i X__ g ¥ ea
respect to the unit normal vector N, and h, "=k, "¢ g

Applying the operator chB:-V’. to (1.4) and using (1.3) and (1.7), we can
see that

b apd f I .3 x b
ch'}u = cw-rz - qcﬁa + kc!i¢a E haﬂ‘¢x’

1.8 V==t 8, S, O =R T,
V0 =a. 8- I8~ 6L,
Vo,=r¥,~a0,~k 5,

(1.9) V= —r it p 0T,

VO,=48,~ 0¥, ~H, 5,
(1 10) K0 =k, ¢, KY=nT, K 0=k0,

where p,=p,B., q,=q¢,B. and r,=r.B.
If the ambient manifold M is a quaternionic Kachlerian manifold with cons-

5 ]
tant Q-sectional curvature ¢, then K ki the components of the curvature tensor

of M are of the form
. c i &l B h
Kyji =T(5:gj_#gfkaFfjHFjFﬁ'ZFﬁFi+GzGi:'

~Gi6,,~26, G'~H\H  —H'H, —2H HY),
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where ¢ is necessarily a constant, provided #+p=8 (see Ishihara [1]). Thus
the structure equations of Gauss, Codazzi and Riceci are given respectively by

r_ € FaG a @ @ z a a

.11 Ky, =5(0,85=0.8:+ 000~ 0Py =209, 0¥ o=V ¥
Q (3 2 (72 x x x X
—2W U670, 070,520,060 +h,h S ~h hy,

(1.12) Vckbax =Vt = _;‘ (95;?553 = grfo;gim » 295&9‘-5: + wfwm -’P‘"Z%

ca

—2F W00, —6,6, —26,,60),

c ba a

L13) K =88y, =08, + VT~ V3T, +0.0,,—0,0,)

bR —nRE,

e by 7 s |

where K dc: and X ce-; denote components of the curvature tensors determined

by the induced metric g,, and in M and in the normal bundle of M respe-

o
& k4
ctively.
2. Some properties concerning with commutativity of the second fundamental
forms

Let M be an #m-dimensional generic submanifold of an (s p)-dimensional
quaternionic Kaehlerian manifold with constant Q-sectional curvature ¢ (#-+p
=8) which satisfies

x,e E N Igpe! 3 Xme Tae Xpf

(2.1 hbe ’pc+hzze ¢&_0’ hbe w’a+ﬂa£ W:—O, hbe aa'rkae ﬂb—O

at every point of M. For a real hypersurface, denoting by [’m:h;a- the condit-
ion (2.1) reduces to

e ¢ ¢ - e -
2.1) Byt i, $,=0, I, W, +h, =0, b 0°+h 6;=0.
From now on we assume that M has commutative second fundamental forms,

that is,
Xp & 4 X8

2.2 n S, =wR
are valid at every point of M.

We transvect the first equation of (2.1) with gS;. Then, making use of (1.6),
we have

a, X,6__
¢ykae ¢J—0'

from which, transvecting with gﬁf,
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X e X gz
(2.3 O
where here and in the sequel we put
x X ,0,a
@4 P =h, 8,0
From the other equations of (2.1) we can similarily obtain

(2.5) b, =Q 15, b,[0=R ],

where Qy::k ?F lff and R ;m Syﬂ . By the way, transvecting the second

equation of (2.1) with ¢y, we get

P gaS Zﬂ‘ il 6; A
which and (2.5) yield
(P, ~R,1D6,=0

and consequently

x x
Pyz =R‘yz :
Hence, by the quite similar way, we can see that
(2.6) B i Fap

yz 7 tyz T Tz
We now apply the operator V, to (2.3) and take the skew-symmetric part of
the equation thus obtained. Then it follows that

Vo, =Vl 3l N 85 —h, V8= (VP 8~ (V,P Di+P V8=V 8D,
from which, substituting (1.9) and (1.12), we have
@D L(-24,004776, ~¥,6, 07, +0; TIfy)+k

¥ Xy 38
C h qi _-kr:akbeg}e

ba "ce

=V PO, —(V,P e P (= J# +, 60,

b yz
Transvecting (2.7) with qéw and using (1.6) and (2.1), we have
b
Vchwx:¢w(Vbezx)¢j’
+ from which, transvecting with ¢’,

(2.8) (VP H¢'= ¢(VP D¢ip

c yw
On the other hand, putting Pyzx=Pyz &, it easily follows from (1.10) and the

definition (2.4) of P y: that Pyu are symmetric with respect to all indices. Hence
(2.8) gives
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VP, O8,= P "¢,

¢ yw

which and (2.7) imply

c =X ¥ g e 8 p% gz g€
@9 5 (-20,0,+%.0, ~V,0, ~0F, +0.F >+h h; =P h b,

where we have used the assumption that the second fundamental tensors are
commutative i.e. that (2.2) is valid at every point of M.
We transvect (2.9) with géj and use (1.6). Then we have

2100 £ (2(8,=0,8,00,~F ¥y, ~ V¥ 1, —0,0,,—030,) —h, 'k’
g,y Babe= = Pyt Pl 048,
On the other hand, a direct computation by using (2.2) and (2.3) implies
P85, =he8,8.,9:8.

SN U
=h ¢ (g"+68" Ik, 05
=hc:¢:hb:¢:
=hyh 8,94
=htochy, 8.9,

with the help of (1.10). Consequently (2.10) becomes

f,e_p %2z, € a x x t
21D ‘kbekay— Pyzhba + 8 [2(gba —¢;— ¢za)5y - !F;lﬁ': B wawby T 6;% - 6czt?b_v

}

and also
x ba__ . ¢
(2.12) byl s =P K+ pn—p—2),

where here and in the sequel we put k":kb:gba, P =P g and kbaxr—'hcaxgw.

yax

We next prove

. LEMMA 1. Let M be an n-dimensional generic submanifold of an (n+p)-
dimensional quaternionic Kaehlerian manifold with constant Q-sectional curvature
c(r+p=8). If (2.1) are valid and the second fundamenial tensors ave commu-
tative at each point of M, then

2.13) V.P*=VJx.
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PROOF. Applying the operator V, to the first equation of (2.1), we have
(Vo o+l S 3 —h 8D+ h
from which, substituting (2.11),
Vb, W O 04— e~ ST T 60,00,

¢ ae c by

g 0B, (RS B0 $)=0,

+ {z(g“—gé;gizc)ﬁ; - ijcy—zpfqtr@— 66" -6, 0% g =0.
Transvecting this equation with ¢), we find

- Vchba‘x * (Vckb:) ¢;¢; (Vg

Cde

)

4 =X Ve AP
V0 45+ (20,8, O, + U0,

from which, contracting with respect to the indices ¢ and d and using the
equation (1.12) of Codazzi, it can be easily verified that
X C
(2.19 V=V, 0678,
On the other hand

x.
~¥0,,~ 0, =0,

% _ X .0 ,3e
P —kcegﬁ ygﬁ ,
from which, applying the operator V, and using (1.6) and (2.3), we can obtain
VP =V b8 =V 1.
3. Main theorems

Before we state our main results we introduce the following lemma, which
is a direct consequence of the equation (1.12) of Codazzi.

LEMMA 2. (for details see [6]). On an n-dimensional gencric submanifold of
a quaternionic Kachlerian manifold of dimension (n-+p)=8) with constani Q-
sectional curvature ¢, the following inequalities are valid:

v h.’ﬂgg.g_c?p(ﬂ —p-2).

¢ o

Let M be an n-dimensional generic submanifold of an (#+ p)-dimensional qua-
ternionic Kaehlerian manifold with constant Q-sectional curvature ¢ (#+p=8).
Suppose that at each point of M (2.1) are valid and the second fundamental
tensors are commutative.

Now we compute the Laplacian AL of the function L=ha;h6: globally defined
on M, where A=gchdV‘. Then we have by definition

LAL=g"(V ¥ 3K+ IV 1, "1
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or using (1.12) and Ricci identity,
AL=(VV WO+ K 0 - K H S BC-h 8, ~h O~k 60D

%y, E J o ¥ g . 3 b | 2
+3:;):{,;y¢i—-km¢;) A uw’;ckywa-h;w;)+3o;(kyegwkc:ej)};z SV R

with the help of (1.8) and (1.9), where K; denotes the local component of the
Ricci tensor of M which is of the form
K= =80, 3, + V¥ s+ 0,00} +h o, ~ 1" 1
because of (1.11).
Hence, by using (1.11), (2.1) and (2.2), we can easily obtain
G AL=V,V OB+ (=D I+ 3h (B3 + 00

bax

+OON ) 1 B R~ Ch SR (g o)+ IV iy

b Tea” z
On the other hand, a simple calculation by using (2.11) gives the following
identities:
3.2 bR K=k P PYH -5 (20— Dh P+ ph ),
3.3 DU D =P P W +5-(n—p=2P Ji+p(-5-(n—p-2)}".

Substituting (3.2) and (3.3) into (3.1), it follows that
3.9 %—ALz 4% bvnr")h”‘j + -j—(p Dk Ih‘+i—2 p(p—D(m—p—2)+ Pyjsz’r’

=P P B IV 3,V -2 (n-p—2).
Moreover, by means of (2.1), (2.4) and (2.11), it is easily verified that
Y %20 g ¥, 0,6, x,0,d,2,0
P szywh h _hbc¢:¢zkad¢ '¢wh R
b
=t G g
=y B SR
; d
= (P Jiy 5 00 (ey, — 838,020 W 5~ 20,0, ) X $ B K
Xy2q408
=P P 1N

Consequently substituting this equation into (3.4) yields

G5 FAL=Y IO - Dh (L a1 (n-p-2)
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2 2
+ UV = 2-"p (= p-2)).
Thus we have

THEOREM 3. Let M be an n-dimensional generic submanifold of an (n+p)-
dimensional quaternionic Kaehlevian manifold (n+p=8)with constant Q-sectional
curvgture ¢ (=0). Swuppose thai the mean curvature vector of M is parallel in
the normal bundle and the second fundamental lensors are commutative. If the
equation (2.1) are valid af each point of M, then the ambient mawnifold is a
Euclidean space or the submanifold M is a real hppersurface.

PROOF. [f the mean curvature vector Hi:hINi is parallel in the normal
bundle, then kax:O, and consequently the function L is constant because of
(2.11) and Lemma 1. Thus, Lemma 2 and (3.5) imply

c(p—-D(n—p-2)=0
because ¢=0. Since #=3p, #—p—2=2(p—1) and consequently
c(p—1)2=0.
Hence we have ¢=0 or p=1.
Combining Theorem B and Theorem 3, we have

THEOREM 4. Let M be an n-dimensional complele, generic swbmanifold of a

quaternionic projective space QP('HP) P8 Suppose that the mean curvature vector
of M is parallel in the normal bundle and that the second fundamenial iensors
are commutalive. If the equaiion (2.1) are valid ¢t czach point of M, then the
submanifold M is a real hypersuriace and is of the form

45+ 3 44443
gl Bl R
for some portion (s, 1) of m—1 (m=n+1) and some T To such that ?'21+r§=1.

REMARK. When the ambient manifold is a Euclidean space, such submani-
folds are determined by Ki and the present author in their paper [3].

Kyungpook Uniuevsity
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