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with Minimal Repair at Failure
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ABSTRACT

Periodic replacement model with minimal repair at failure is extended to the case where quantity pur-

chases are possible. A recursive relationship among replacement intervals is obtained, which show: that

replacement intervals are an increasing sequence due to the inventory carrying cost. Using the relationship,

a procedure is given for determining how many units to purchase on each order and when to replace each

unit after it has begun operating so as to minimize the total cost per unit time over an infinite time span. The

problem can be simplified if equal replacement intervals are assumed, and the solution is very close t> the

solution of the unconstrained problem.

1. INTRODUCTION

Suppose that an operating equipment fails
according to some probability law. When the
equipment fails, it must be repaired or replaced to
continue its operation. If an equipment having
an IFR is not restored to its original state by
repair, then the repair cost increases with its
operating life due to the increase of repair frequ-
ency. Therefore, a sequence of equipments operat-
ing one after another is believed to be more
economical than operating one equipment without
replacing it. Thus to minimize the total cost per
unit time, one wishes to determine how many

equipments to purchase on each order and when

to replace each equipment after it has hegun
operating.

The idea of minimal repair was introducad by
Barlow and Hunter [1]. This idea is that if an
equipment fails, a repair can be made which does
restore it not to its original state (good as new)
but to its operating condition immediately before
failure (bad as old). The policy discussed by Bar-
low and Hunter is to perform minimal repars up
to a scheduled time 7 and the time 7 is the only
decision variable. They obtained an expression
for the expected cost per unit time and an integral
equation for the optimal age 7. However, in their
policy they assumed implicitly one for one order-
ing and fixed ordering cost was included in every
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replacement.

This article examines the extension of the
Barlow and Hunter model {1] to the case where
quantity purchases are possible. The decision
variables are order quantity per order and replace-
ment intervals for the equipments.

2. SYMBOLS
h(t) = failure rate at time ¢
H(t) = f§ h(x) dx =cumulative hazard
¢; = expected cost of a minmal repair
¢» = expected cost of a replacement; this
includes purchasing price of replacing
item
¢» = inventory carrying cost per item per
unit time
K = fixed ordering cost
@ = order quantity per order
To; = replacement interval of ¢~¢4 used item
for a given order quantity @
(1=1,2, - » @)

C(Q,T)= expected cost per unit time if order
quantity is @ and replacement inter-
valsare Tq = (L1, Toar="  Tyo)

c*(@ = the optimum cost per unit time for a

given order quantity &
Other symbols are defined as needed.
3. THE MODEL

In this policy, @ units are purchased per
order, i-t4 used unit is replaced after using for time
interval 74;(7=1,2,---,Q) with minimal repair
for any intervening failures. The entire cycle
repeats after ZHJT,“_ The problem is to select or-
der quantity iQ=:]and replacement intervals 7y
(Tary Tqzs »Tae) SO as to minimize the
total cost per unit time.

Q
C(Q, 70) = [K+ CPQ + sz H(:Tgx)

i=1

Q . Q

+ ca El (@i)Tei)/ Zl Tqi )

The last two terms are expected repair and
inventory carrying cost, since the expected num-
ber of failures in (0, 7] of a equipment under
minimal repair is equal to cumulative hazard
H(T) (2, Chap. 4] and inventory level when /-t
unit is operating is (@-7 ),

3.1. Determination of Replacement Intervals

To find the optimal replacement intervais

for a given @, we set the partial derivative: of
Equation (1) with respect to 7 equal to zero,
obtaining
cth(Toi) + cu (Q-7) = c(g To)
for i=1,2,-,Q @
From Equation (2), we obtain the following
recursive relationship among replacement intervals:

h(Tqi) :h(Toy l+1) - Ch//Cf

for i=1,2,-,@-1 (3

Notice that a sequence of replacement inter-
vals {Tg;} isan increasing sequence due to the
inventory carrying cost ¢,

Again summing Equation (2) over all :, we
obtain

Q
Z

i=1

To" th(Tq;')+ Ch (Q_l‘)

(5 Tei) €CQ,Te)

i=1

Q
Z (Q_ i )TO i

i=1

If

Q
K+cQ+cy 2o H(Ty,) %o,
i=1
or

S A (Te ) Tor ~-HTo)) = K+e,@)/c (4)
i=1

Using Equation (3), we can express
terms of 7

R(Te:) = h(Tqq) —cn @ i)/ ¢y

T

in

or
Toi = h { BT d=ea(Q-1 )%, ) G
Substituting Equation (5) into Equation (4),



we can determine Ty, . Once The is obtained,
we can determine 7g; using Equation (5) and
from Equation (2) the optimum cost is
C*@= c/h (Teo) (6)

Thus the optimal solution satisfies Equations
(4) and (5), and the optimum cost is given by
Equation (6). If @=1, Equations(4),(5)and
(6) degenerate to Barlow and Hunter’s.

REMARK: If &(t) is strictly increasing, then
Ter,

, Tee (possibly infinite, that is, never

there exists a unique replacement intervals
Tez,
to replace) satisfying Equations (4),(5),(6) and
it must yield C*(Q) since the hessian matrix
evaluated at the critical point is

diagonal with
¢ *
elements ¢;h"(T5;) /Y, Te; and thus the

i=]

Q Q
determinantis Ccr/ Y 73:)° _"lh' T30,
i=1 i=

3.2. Determination of Order Quantity

In order to find the condition that stocking
policy is required, let us examine when
Cc*(1) = C*(2).in case of IFR, from Equation (6),
C*( 1) ZC*(Z) implies Th 27fz and vice versa.
Let T,=Ty and thus, from Equation (5),
Ta=h" (A(TD - ea/cf). If (D= C*@)
or T} (=Tw)=Ts,, then Tpn=T5 and,from
the fact that A (TDT-H(T)
function of T,

is an increasing

Zz: {8(T2) Ty = H(T,; )}

i=l
2
2 D@D TI-HTR)Y (D
i=1
where | T22=TIT and Tu=kY AT 1) - c’es)
Q
Substituting Equation (4), Y {(#(Te!) e
i=1

- H(T3) ) = (K+c, Q )/ ¢y, into Equation (7),
we obtain the condition that stocking policy is
required:

w(T3) Tay - HT D)= ¢,/ s
where, Ta=KF {2 (Ti}) - &/ ¢}

Thus, if 731  (replacement interval for the
classical model) is known, wether stocking policy
is required or not can be decided.

If life distribution is Weibull of the form
F(@) =1-exp(-t?), T ={K+c,) e A(B-1) )1/
and the condition for stocking is

((Ktcp/cs A(f-1D)) E-V278
- (e ferAB=1D) B1/E 2 6, /¢y

As might be expected, stocking policy is
required when K is large and non-stocking is re-
quired when ¢, is large.

If stocking is required, we must determine the
stocking level. Since the expression for 9¢(Q,T,)
/2@ is not readily found, the problem of finding
the overall optimum (Q¥ 7%, %) is better
resolved by finding suboptimal solutions (@, T7)
from Equations (4), (5) and (6) for various fixed
positive integer values of @.  From these, the

pair which gives the minimum value for C(Q,7T.)
is selected. As the optimal order quantity is
determined by a trade-off between fixed ordering
K and inventory carrying cost , We
may find the smallest integer @ which satisfies

c* @+ 1D -Cc*Q =0.

cost Ch

4. EQUAL REPLACEMENT INTERVAL CASE

If we assume that replacement intervals are
equal, the problem is considerably simplified.
Suppose that 7Ty;=T, for all/, then Equations (1)
and (4) degenerate to

C(Q,To) = {K+¢,Q + ¢,QH(To)

+ e Q@(Q-1)T /2L QT ®
and
B(To)Te - H(Te) = K+ ¢,Q)/csQ ®
Substituting the 7, satisfying Equation (9)
into Equation (8), we obtain
@ = csh(TP) + r (Q-1)/2 ao

5. NUMERICAL EXAMPLE

Consider a unit having a Weibull lifetime



distribution F(¢)=1— exp (-3¢2). Suppose
that K =$30, ¢, =$100, ¢y =8%5and e =32.
From Equation (5), Tg: =Tee~ (@-7)/15. Sub-
stituting 74, into Equation (4) and making some
algebraic manipulation, we obtain Toa =

{27 + 2073- @*1) 72100 }'/* + (Q-1) /0.

Substituting 7o into Equation (6), we obtain

replacement interval model in practice.

C*Q) = 2(450 /Q+ 1500~ (@%-1),/ 12}V 3+ (@-1).

Since C*(2)> €*(3) and  C*(3)<C*(4),the
optimal order quantity ¢*= 3 and the optimal
TH= 2641, Th=
2.707, Tax = 2.774 and the optimum cost is
c*'(3) =$ 8.2

Likewise, in equal replacement case from
Equations (9) and (10), Q*=3, T3*= 2,08 and
the optimum cost is $83.24.

replacement intervals are

6. COMPARATIVE COST BEHAVIOR

Since the optimal order quantity Q¥ is de-
termined by a trade-off between fixed ordering
the
expected cost per unit time is computed numeri-
cally and plotted as a continuous function of
K/c,- Figure 1 shows the respective costs of the
three models ( C7 : Barlow and Hunter’s, c3¥:

cost K and inventory carrying cost ¢,

equal replacement interval case, C3 : unequal re-
placement interval case) in the case of the pre-

might

the costs of the three

ceding example when K is varied. As
K=0

As the ratio K¢, increases,

be expected, if

models are equal.
cost reduction due to quantity pruchase, cr-c;
or C¥-CT, increases. However, the difference
between ¢} and ¢} is very little and it does
not be systematically related to the ratio K%,.
This seems to be due to the following fact. If ¢,
is large, the optimal order quantity ©* issmall
and on the other hand if Q* islarge,

be small. Thus one can save little money by re-

Cy must
moving the equality assumption on replacement

intervals. It may be satisfactory to use equal
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Figure1, Comparative cost behavior
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