Furoquinoline Alkaloids in Dictamus albus Root Bark

Won Sick Woo and Sam Sik Kang Natural Products Research Institute, Seoul National University, Seoul 110, Korea

Abstract—From the root bark of *Dictamnus albus* (Rutaceae) five furoquinoline alkaloids, robustine, dictamine, γ -fagarine, skimmianine and haplopine were isolated and characterized by spectral data.

Keywords—*Dictamnus albus* · Rutaceae · furoquinoline alkaloid · robustine · dictamine · γ-fagarine · skimmianine · haplopine

Dictamnus albus L. (Rutaceae) has been used for jaundice, leprosy, headache, colds, rheumatism¹⁾ and antifertility.²⁾ Phytochemical studies on this plant have demonstrated the presence of furoquinoline alkaloids,³⁾ limonoids,⁴⁻⁸⁾ amines,⁹⁾ monoterpenes,¹⁰⁾ flavonoids,¹⁰⁻¹²⁾ coumarins,¹³⁾ and saponins.¹⁴⁾

Although the root bark of this plant is used as a crude drug, limited reports in the literature on the constituents of this part were found.^{5,9)} The present investigation was undertaken to determine the identity of any alkaloidal constituents in the root bark of this plant.

All the compounds (I-V) isolated from the alkaloidal fraction were indicated the positive Dragendorff's test.

Compound I, mp 144~5°, showed a maximum peak at 246.5nm and fine bands in the region of 302~340nm in UV spectrum which were shifted to a longer wavelength accompanied by loss of fine structure in acidic medium, typical of the furo [2, 3-b] quinoline system in its structure¹⁵.

The appearance of peaks for furan ring system at 3160, 3130 and 1092cm^{-1} in its IR spectrum¹⁶⁾ and signals for furanoid protons at δ 7.03 (lH, d, J=2.8Hz, H- β) and 7.56 (lH, d, J=2.8Hz, H- α)¹⁷⁾ and carbons at δ 104.8(C- β) and

143.3(C- α)¹⁸⁾ in NMR spectra, respectively, strongly supported the above suggestion.

A methoxy signal at $\delta 4$. 42 indicated the presence of 4-methoxy group. 17) Moreover, its NMR spectrum showed three aromatic proton signals at $\delta 7$. 12 (lH, dd, J=2 and 7. 4Hz), 7. 33(dd, J=7. 4 and 8. lHz) and 8.03(dd, J=2 and 8. lHz). Since the lower field double doublet can be interpreted as the resonance of H-5, a hydroxyl group should be located at C-8.

Methylation of Compound I with CH_2N_2 at room temperature afforded a methylether, mp $142\sim3^{\circ}$, which showed a molecular ion peak at m/z 229 as a base peak in its mass spectrum. The high intensity of fragment ions at m/z 214 (M⁺-15) and 186 (M⁺-43), and at m/z 228 (M⁺-1) and 200 (M⁺-29) supported that the methoxy groups were located at C-4 and C-8, respectively¹⁹.

From the above results, Compound I was identified as 8-hydroxy dictamine (=robustine)²⁰⁾ and its methylether as γ -fagarine.²¹⁾

Compound II, mp $133\sim2^{\circ}$, was very similar to Compound I in its UV and IR spectra. The NMR spectrum showed a methoxy signal at $\delta4.42$, furan ring proton signals at $\delta7.01$ and 7.57 and overlapping signals for 4 protons in

	R ₁	R ₂
1	ОН	Н
ij.	н	н
111	осн3	H
IV	осн ₃	осн3
٧	оснз	ОН

the aromatic region indicating the simple 4-methoxy furoquinoline nature. This suggestion was established by means of mass spectrum of this compound which showed a molecular ion peak at m/z 199 (100%) and the high intense peaks for M⁺-15 and M⁺-43 ions at m/z 184 and 156, respectively. The identity of Compound II as dictamine was obtained by comparison of its physical and spectral data with those appeared in literature. 15,17,19,22,23)

Compound III, mp $142\sim3^{\circ}$, was identified as γ -fagarine by direct comparison with the methylated Compound I coupled with physical and spectral data appeared in literature.²¹⁾

Compound IV, mp $177\sim8^{\circ}$, was also very similar to Compound I in its UV and IR spectra. However, the NMR spectrum of this compound showed three methoxy signals at $\delta4.02$, 4.11, and 4.42, the latter downfield signal being due to the C-4 methoxy group. Two sets of doublets at $\delta7.18(J=9.5\text{Hz})$ and 7.97(J=9.5Hz), and $\delta6.99(J=2.8\text{Hz})$ and 7.53(J=2.8Hz), each integrating for one proton, were assigned to two ortho-coupled aromatic protons and furan ring protons, respectively. To

The downfield aromatic signal should be ass-

igned to H-5. Therefore, the second aromatic proton must be located at H-6. Hence the other two methoxy groups were located at H-7 and 8. Therfore, Compound IV was identified as skimmianine.

All the physical and spectral data were identical those appeared in literature.²³⁾

Compound V, mp 204~5°, was virtually identical to skimmianine (IV) in UV and IR spectra. The NMR spectrum of Compound V exhibited the presence of two methoxy groups ($\delta 4.22$ and 4.42), which were allocated at C-4 and C-8, respectively, because of the intense peaks for M+-15 and M+-43, and for M+-1 and M+-29 in its mass spectrum. The orthrocoupled two aromatic proton signals at $\delta 7.13$ and 7.93 with J=9.3Hz were assigned to H-6 and H-5, respectively, as in skimmianine. Methylation with CH₂N₂ gave skimmianine which was confirmed by direct comparison with the natural material. Therefore, an additional hydroxy group must be located at C-7. From the above results, Compound V was identified as haplopine(V).24)

Robustine (I) and haplopine (V) have not been isolated from this plant by any of the earlier authors from this plant.

Experimental

Nine kgs of the root bark of *D. albus* (purchased from a drug market) was powdered and extracted with CHCl₃. The CHCl₃ extract yielded 317g of residue after evaporation in vacuo. The residue was taken up in ether, and 5%HCl solution was added. After thorough partitioning, the ether was removed. The resulting acidic solution was made alkaline with c-NH₄OH and extracted several times with ether and then chloroform until the chloroform extract gave a negative alkaloid test with Mayer's reagent. The organic fractions were combined, dried over

anhydrous Na₂SO₄, filtered and concentrated in vacuo to yield a residue (12.65g).

The crude alkaloidal fraction was subjected to SiO₂ column chromatography eluting with benzene-ether (9:1, 6:1 and then 4:1) to yield 10 subfractions based on the similarity of their TLC patterns. Subfraction No. 3 yielded, after recrystallization from MeOH, Compound I as stout plates.

Subfraction No. 4 was crystallized from MeOH to give Compound II as stout plates. Fractional recrystallization of subfraction No. 6 from MeOH afforded Compound III and Compound IV, as needles.

The subfractions No. 7 and 8 gave Compounds IV and V, as needles, respectively.

Compound I (robustine)—Mp 144~5° [Lit.²⁰⁾ mp 147~8°]

uv, \(\text{Amax} (MeOH) \) \(\text{nm} (\log \varepsilon) : 246.5(4.36), 302 \) \((3.30), 315(3.40), 330(3.40), 340(3.36); \) \((MeOH-HCl) \) \(252.5(4.37), 349(3.36). \)

ir, \(\numax(KBr)cm^{-1}: 3270(OH), 3160, 3130\) (furan), 1618(C=C), 1255(ether), 1092(=COC).

H¹-nmr(CDCl₃, TMS)δ:4.42(3H, s, 4-OCH₃), 7.03(1H, d, J=2.8Hz, furan β-H), 7.12(1H, dd, J=7.4 and 2Hz, H-7), 7.33(1H, dd, J=7.4 and 8.1Hz, H-6), 7.56 (1H, d, J=2.8 Hz, furan α-H), 8.03(1H, dd, J=8.1 and 2Hz, H-5).

C¹³-nmr(CDCl₃, TMS) δ : 59.0(OCH₃), 104.0 (C-4a), 104.8(furan β -C), 110.2(C-7), 112.9 (C-5), 118.8(C-3), 124.1(C-6), 135.8(C-8), 143.3(furan α -C), 151.1(C-8a), 157.5(C-4), 162.5(C-2).

ms, m/z (rel. int.): 215(M⁺, 100), 200(M⁺-CH₃, 60.1), 186(M⁺-HCO, 24.4), 172[M⁺-(CH₃+CO), 26.7], 144[M⁺-(CH₃+2CO), 13.4], 116(144-CO, 13.1), 89(116-HCN, 15.3).

Compound II (dictamine)—Mp 132~3° (Lit.²³⁾

mp 130~2°]

uv, λmax(MeOH) nm(log ε): 238(4.73), 243 (4.69), 309(3.93), 331(3.88); (MeOH-HCl), 241.5(4.84), 312(3.93), 329(3.91).

ir, vmax(KBr) cm⁻¹: 3140, 3112(furan), 1618 (C=C), 1259(ether), 1079(=COC).

nmr(CDCl₃, TMS) δ : 4.42(3H, s, OCH₃), 7.01 (1H, d, J=2.9Hz, furan β -H), 7.57(1H, d, J=2.9Hz, furan α -H), 7.26 \sim 7.70(2H, m, H-6 and H-7), 7.84(1H, dd, J=2 and 8Hz, H-8), 8.19(1H, dd, J=2 and 8Hz, H-5).

ms, m/z (rel. int.): 199(M⁺, 100), 184(M⁺– CH₃, 75.5), 156[M⁺– (CH₃+CO), 38.6], 128(156-CO, 46.7), 101(128-HCN, 27.2),

Compound III (γ-fagarine)—Mp 142~3° [Lit.²¹⁾ mp 140~2°]

uv, $\lambda \max(MeOH)$ nm(log ϵ): 245(4.63), 301 (sh, 3.64), 312(3.74), 326(3.72), 339 (3.67); (MeOH-HCl) 251(4.61), 343(3.69).

ir, ν max(KBr) cm⁻¹: 3150, 3122(furan), 1622 (C=C), 1266(ether), 1097(=COC).

nmr(CDCl₃, TMS) δ : 4.06(3H, s, 8-OCH₃), 4.42(3H, s, 4-OCH₃), 7.03(1H, dd, J=7.6 and 1.3Hz, H-7), 7.05(1H, d, J=2.8Hz, furan β -H), 7.34(1H, dd, J=7.6 and 8.3Hz, H-6), 7.62(1H, d, J=2.8Hz, furan α -H), 7.84(1H, dd, J=8.3 and 1.3Hz, H-5).

ms, m/z (rel. int.): 229 (M⁺, 100), 228 (M⁺ – H, 74.1), 214 (M⁺ – CH₃, 33.3), 200 (M⁺ – HCO, 77.8), 199 (M⁺ – CH₂O, 35.2), 186 [M⁺ – (CH₃ + CO), 16.7], 184 (199 – CH₃, 31.5), 156 (186 – HCHO, 35.2), 128 (156 – CO, 24.1).

Compound IV (skimmianine)—Mp $177\sim8^{\circ}$ [Lit.²³⁾ mp $174\sim6^{\circ}$]

uv, λmax(MeOH) nm(log ε): 242(sh, 4.66), 250 (4.81), 305(sh, 3.69), 321(3.86), 333(3.88), 344(sh, 3.76); (MeOH-HCl) 254(4.77), 322 (3.85), 351(3.90).

ir, \(\nu\max(KBr)\) cm⁻¹: 3150, 3121(furan), 1619 (C=C), 1269(ether), 1093(=COC).

nmr(CDCl₃, TMS) δ: 4.02(3H, s, OCH₃), 4.11

(3H, s, OCH₃), 4.42(3H, s, 4-OCH₃), 6.99 (1H, d, J=2.8Hz, furan β -H), 7.18(1H, d, J=9.5Hz, H-6), 7.53(1H, d, J=2.8Hz, furan α -H), 7.97(1H, d, J=9.5Hz, H-5).

ms, m/z(rel. int): 259(M⁺, 34.6), 258(M⁺-H, 13.6), 244(M⁺-CH₃, 100), 230(M⁺-CHO, 65.4), 216[M⁺-(CH₃+CO), 31.9], 201(216-CH₃, 51.3), 200(230-CH₂O, 16.8), 199(200-H, 18.3), 188(216-CO, 4.7), 184(199-CH₃, 13.6), 173(201-CO, 29.8), 158(173-CH₃, 8.4), 130(158-CO, 27.7).

Compound V (haplopine)—Mp 204~5° [Lit.²⁴⁾ mp 209~210°]

uv, $\lambda \max(MeOH)$ nm(log ϵ): 242(sh, 4.65), 250(4.79), 304(sh, 3.71), 318(3.84), 331 (3.84), 341(sh, 3.80); (MeOH-HCl) 239(sh, 4.32), 254(4.71), 322(3.85), 349(3.91).

ir, vmax(KBr) cm⁻¹: 3165, 3140(furan), 1626 (C=C), 1261(ether), 1096(=COC).

nmr(CDCl₃, TMS) δ : 4.22(3H, s, 8-OCH₃), 4.42 (3H, s, 4-OCH₃), 7.01(1H, d, J=2.8Hz, furan β -H), 7.13(1H, d, J=9.3Hz, H-6) 7.53 (1H, d, J=2.8Hz, furan α -H), 7.93(1H, d, J=9.3Hz, H-5).

ms, m/z (rel. int.): 245 (M⁺, 69.5), 244 (M⁺–H, 15.9), 230 (M⁺–CH₃, 20.3), 227 (M⁺–H₂O, 100), 216 (M⁺–HCO, 23.3), 202 [M⁺–(CH₃+CO), 61.3], 199 (227–CO, 58.5), 187 (202–CH₃, 42.8), 184 (199–CH₃, 33.9) 172 (202–CH₂O, 13.1).

Acknowledgements— This investigation was supported by the Special Programme of Research, Development and Research Training in Human Reproduction, World Health Organization (Project 77918A).

⟨Received on July 10,1985: Accepted on August 8, 1985⟩

Literature

 Perry, L.M.: Medicinal Plants of East and Southeast Asia Attributed Properties and Uses, The MIT press, London, p-364 (1980)

- Prakash, A.O.: Contraceptive Delivery Systems,
 9 (1984).
- Manske, R.H.F. and Rodrigo, R.: The Alkaloids, vol. XVII, Academic Press, NY, p-105 (1979).
- 4. Thomas, H.: Ber. Dtsch. Pharm. Ges., 33, 68 (1923).
- Kaku, T. and Ri, H.: J. Pharm. Soc. Jap., 55, 219(1935).
- Schechter, M.S. and Haller, H.C.: J. Am. Chem. Soc., 62, 1307 (1940).
- Barton, D.H.R., Pradhan, S.K., Sternhell, S. and Templeton, J.F.: J. Chem. Soc., 2552(1961).
- Arnott, S., Davie, A.W., Robertson, J.M., Sim, G.A. and Watson, D.G.: J. Chem. Soc., 4183 (1963).
- Thomas, H. and Dambergis, C.: Arch. Pharm., 268, 39(1930).
- 10. Renner, W.: Pharmazie, 12, 763(1962).
- 11. Grabarczyk, H.: Diss. Pharm., 16, 177(1964).
- 12. Bodalsri, T. and Malcher, E.: Acta Polon. Pharm., 21, 51(1964).
- Gonzalez, A.G., Diaz Chico, E., Lopez Dorta,
 H., Luis, J.K. and Rodriguez, I.: An. Quin., 73,
 430(1977).
- Alonso, A.P.: Farmacognosia Annales (Madrid),
 287 (1952).
- Scott, A.I.: Interpretation of Ultraviolet Spectra of Natural Products, Pergamon Press, NY, p-184 (1964)
- 16. Briggs, L.H. and Colebrook, L.D.: J. Chem. Soc., 2458(1969).
- 17. Robertson, A.V.: Aust. J. Chem., 16, 451(1963).
- 18. Brown, N.M.D., Grundon, M.F., Harrison D.M. and Surgenor, S.A.: Tetrahedron, 36, 3516 (1980).
- Clugston D.M. and MacLean, D.B.,: Can. J. Chem., 43, 2516(1965).
- Fakhrutdinova, I.M. Sidyakin, G.P. and Yunusov,
 Yu.: Khim. Prir. Soedin., 1, 107(1965).
- 21. Ha-huy-Ke and Luckner, M.: *Pharmazie*, 21,771
- Chang, P.T.B., Aynilian, G.H., Cordell, G.A., Tin-Wa, M., Fong, H.H.S., Perdue, Jr., R.Z., and Fransworth, N. R.: J. Pharm. Sci., 65, 561(1976)
- Storer, R. and Young, D.W.: Tetrahedron, 22, 1217 (1973).
- Ishii, H., Hosoya, K., Ishikawa, T., Ueda, E. and Haginiwa, J.: Yakugaku Zasshi, 94, 2322 (1974).