EXTREMELY MEASURABLE SUBALGEBRAS

S. K. AYYASWAMY

1. Notations and preliminaries:

For each $a \in S$ and $f \in m(S)$, denote by $l_a f(s) = f(as)$ for all $s \in S$. If A is a norm closed left translation invariant subalgebra of m(S) (i. e. $l_a f \in A$ whenever $f \in A$ and $a \in S$) containing 1, the constant one function on S and $\varphi \in A^*$, the dual of A, then φ is a mean on A if $\varphi(f) \geq 0$ for $f \geq 0$ and $\varphi(1) = 1$, φ is multiplicative if $\varphi(fg) = \varphi(f)\varphi(g)$ for all $f, g \in A$; φ is left invariant if $\varphi(1_S f) = \varphi(f)$ for all $s \in S$ and $f \in A$. It is well known that the set of multiplicative means on m(S) is precisely βS , the Stone-Cěch compactification of S[7].

A subalgebra of m(S) is (extremely) left amenable, denoted by (ELA)LA if it is nom closed, left translation invariant containing contants and has a multiplicative left invariant mean (LIM). A semigroup S is (ELA) LA, if m(S) is (ELA)LA.

A subset $E \subset S$ is left thick (T. Mitchell, [4]) if for any finite subset $F \subset S$, there exists $s \in S$ such that $F s \subset E$ or equivalently, the family $\{s^{-1}E : s \in S\}$ has finite intersection property.

2. Characterisation of extremely measurable subalgebras:

DEFINITION 2.1. Let S be a semigroup and \mathcal{F} a subalgebra of P(S), the power set of S, such that $aE \in \mathcal{F}$ whenever $E \in \mathcal{F}$ and $a \in S$. \mathcal{F} is left measurable if there exists a non-negative finitely additive measure μ on \mathcal{F} such that $\mu(aE) = \mu(E)$ for all $E \in \mathcal{F}$ and $a \in S$.

Let \mathcal{F} be a subalgebras of P(S) such that $a^{-1}E$ and $aE \in \mathcal{F}$ whenever $E \in \mathcal{F}$ and $a \in S$. Let $m(\mathcal{F}, S)$ denote the norm closure of the linear span of the set $\{1_E : E \in \mathcal{F}\}$. Then $m(\mathcal{F}, S)$ is a norm closed subalgebra of m(S) containing constants. Let $\Delta(\mathcal{F}, S)$ denote the set of all multiplicative means on $m(\mathcal{F}, S)$.

REMARK 2.2. There are proper subalgebras of P(S) satisfying the condition that both $a^{-1}E$ and aE are elements of the subalgerba whenver E is its element. Examples:

(1) Consider the right zero semigroup N of natural numbers (i.e.) a,b=b for all $a,b\in N$. Let $\mathcal F$ be the algebra of those subsets of N which are either finite

or their complements are finite. It is clear that \mathcal{F} is a proper subalgebra of m(S) and that $sE=E=s^{-1}E$ for any $s\in N$ and $E\subset N$.

(2) If S is a group, consider the collection $\mathcal{F} = \{\phi, S\}$. \mathcal{F} is trivially a proper subalgebra of m(S) satisfying the condition that $s^{-1}E$ and $sE \in \mathcal{F}$ whenever $E \in \mathcal{F}$ and $s \in S$.

DEFINITION 2.3. Let \mathcal{F} be a subalgebra of P(S) such that $a^{-1}E$ and $aE \in \mathcal{F}$ whenever $E \in \mathcal{F}$ and $a \in S$. A mean μ on $m(\mathcal{F}, S)$ is called an extremely left invariant measure if μ $(1_E) = \mu(1_{aE})$ for every $a \in S$ and $E \in \mathcal{F}$. $m(\mathcal{F}, S)$ is called extremely left measurable if there exists an extremely left invariant measure on $m(\mathcal{F}, S)$.

REMARK 2.4. (1) when $\mathcal{F}=P(S)$, Definition 2.3 is consistent with P.V. Ramakrishnan's concept of extremely left invariant measures on S[5].

(2) J. Sorenson has proved in [6] that every left invariant measure on a Semigroup S, if exists, gives rise to a left invariant mean on m(S). The corresponding result for $m(\mathcal{F}, S)$ also holds. That is, every extremely left invariant measure on $m(\mathcal{F}, S)$ gives rise to a left invariant mean on $m(\mathcal{F}, S)$. (The proof adapts verbation to that of J. Sorenson's result and so we omit). Converse is not true even for $\mathcal{F}=P(S)$. For example, consider the semigroup, $S=G\cup\{0\}$ where G is a finite group and 0 is a new element added to G in such a way that the new multiplication of elements is as follows: $g\cdot 0=0\cdot g=0$ for all $g\in G$ and $g_1\cdot g_2$ is the original product defined in G. Then the function μ on m(S) defined by $\mu(f)=f(0)$ is a multiplicative left invariant mean but it is not a left invariant measure. However, for cancellative semigroups, the converse is true.

PROPOSITION 2.5. Let S be a cancellative semigroup such that $m(\mathcal{F}, S)$ admits a LIM. Then every LIM on $m(\mathcal{F}, S)$ is a left invariant measure on $m(\mathcal{F}, S)$.

Proof. S is cancellative implies that $s^{-1}(sA) = A$ for all $s \in S$ and $A \subset S$. Therefore, if μ is a LIM on $m(\mathcal{F}, S)$ and $1_A \in m(\mathcal{F}, S)$, then $\mu(1_A) = \mu(1_s - 1_{(sA)}) = \mu(1_s 1_{sA}) = \mu(1_s 1_{sA})$.

In Theorem 2.6, we characterise all those subalgebras of the form $m(\mathcal{F}, S)$ which are extremely left measurable. The proof follows the pattern of A.T. Lau ([3], Theorem 2)

THEOREM 2.6. Let S be a semigroup and \Im an algebra of subsets of S such that $s^{-1}E$ and $sE \in \Im$ whenever $E \in \Im$ and $s \in S$. Consider the following statements:

- (A) $m(\mathcal{F}, S)$ is extremely left measurable.
- (B) For each finite collection $\{E_1, E_2, \dots, E_n\}$ of disjoint sets from \mathcal{F} with union S, there exists at least one E_i such that $\bar{E}_i \cap \{\bigcap_{s \in S} \overline{s} E_i\} \neq \phi$ where closure is taken in $\Delta(\mathcal{F}, S)$

In general (A) implies (B). If S is a left cancellative semigroup then (B)

implies (A).

Proof. (A) implies (B)

Let φ be a left invariant measure on $m(\mathcal{F}, S)$. Then we have $1 = \varphi(S) = \sum_{i=1}^{n} \varphi(E_i)$. Hence $\varphi(E_i) > 0$ for some i which implies that $\varphi(sE_i) = \varphi(E_i) = 1$ since φ is multiplicative. Consequently $\varphi \in \bar{E}_i \cap \{\bigcap_{i \in S} s\bar{E}_i\}$ (closure in $\Delta(\mathcal{F}, S)$). That is, $\bar{E}_i \cap \{\bigcap_{i \in S} s\bar{E}_i\} \neq \emptyset$.

(B) implies (A)

Let \mathcal{D} be the set each of whose elements is a finite collection $\{E_1, \dots, E_n\}$ of disjoint sets in \mathcal{F} with union S. \mathcal{D} can be made as a directed set by defining the order $P_1 \geq P_2$ to mean that each set in P_2 is the union of sets in P_1 where P_1 and $P_2 \in \mathcal{D}$. For each $E \in \mathcal{F}$ define $K_E = \{\varphi \in \mathcal{A}(\mathcal{F}, S) : \varphi(sE) = \varphi(E) \text{ for all } s \in S\}$. If we can show that the collection $\{K_E : E \in \mathcal{F}\}$ is a collection of nonempty closed subsets of $\mathcal{A}(\mathcal{F}, S)$ with finite intersection property, then by the compactness of $\mathcal{A}(\mathcal{F}, S)$ it will follow that $\bigcap_{E \in \mathcal{F}} K_E \neq \phi$. Then any $\varphi \in \bigcap_{E \in \mathcal{F}} K_E$ will be a multiplicative left invariant measure on $m(\mathcal{F}, S)$.

Clearly each K_E is closed in $\Delta(\mathcal{F},S)$. We shall prove that for each $E \in \mathcal{F}$, K_E is nonempty: If $E \in \mathcal{F}$, we have $\{E,E'\} \in \mathcal{P}$ where E' denotes the complement of E in S. Therefore, by the condition (B), either $\bar{E} \cap \{\bigcap_{s \in S} \bar{s}E\} \neq \phi$ or $\bar{E}' \cap \{\bigcap_{s \in S} \bar{E}E'\} \neq \phi$. In case, $\bar{E} \cap \{\bigcap_{s \in S} \bar{s}E\} \neq \phi$ then any $\varphi \in \bar{E} \cap \{\bigcap_{s \in S} \bar{s}E\}$ is an element of K_E since φ (sE) = $\varphi(E)$ =1. On the other hand, if $\bar{E}' \cap \{\bigcap_{s \in S} \bar{s}E'\} \neq \phi$ then for any $\varphi \in \bar{E}' \cap \{\bigcap_{s \in S} \bar{s}E'\}$ we have $\varphi(sE') = \varphi(E') = 1$. As S is left cancellative, $sE' \cap sE = \phi$ for all $s \in S$ and therefore $\varphi(sE) = \varphi(E) = 0$. That is $\varphi \in K_E$.

To show that the family $\{K_E : E \in \mathcal{F}\}$ has finite intersection property, let E_1, \dots, E_n be a finite number of arbitrary elements in \mathcal{F} . For each $i=1,2,\dots,n$, let $P_i=\{E_i,E_i'\}$ and choose $P_o\in\mathcal{P}$ such that $P_o\geq P_i$ for each $i,1\leq i\leq n$. By assumption, there exists F in P_o such that $\overline{F}\cap \{\bigcap_{s\in S}\overline{sF}\}\neq \phi$. Let $\varphi_0\in \Delta(\mathcal{F},S)$ such that $\varphi_0(sF)=\varphi_0(F)=1$ for all $s\in S$. If $F\subset E_i$ then $sF\subset sE_i$ for all $s\in S$ so that $\varphi_o(sE_i)=\varphi_o(E_i)=1$ for all $s\in S$. If $F\subset E_i'$, then $\varphi_o(sE_i')=\varphi_o(E_i')=1$. Therefore, by the left cancellation of S, it follows, as in the previous paragraph, that $\varphi_o(sE_i)=\varphi_o(E_i)=0$. Hence $\varphi_o\in \sum_{i=1}^n K_{E_i}$. This completes the proof.

REMARK 2.7. If the condition 'left cancellation' of S is removed, then (B) implies (A) need not be true. The example $S=G\cup\{0\}$ in Remark 2.5 is a nonleft cancellative semigroup which is not left measurable. However, since S is ELA for each finite collection $\{E_i, \dots, E_n\}$ of disjoint sets in S with union S, there exists at least one E_i which is left thick ([3], Theorem 2): This set E_i is precisely that set which contains the element 0. Therefore, $E_i \cap \{\bigcap_{i \in S} E_i\} = \{0\} \neq \emptyset$.

As $m(\mathcal{F}, S)$ is a Banach algebra containing identity, by a standard argument in harmonic analysis, the extreme left measurability of $m(\mathcal{F}, S)$ can be characterized in terms of the ideal A spanned by $\{1_{aE}-1_E: E\in \mathcal{F} \text{ and } a\in S\}$. Theorem 2.8 gives three equivalent conditions.

THEOREM 2.8. Let S be a semigroup and \exists a subalgebra of subsets of S such that $a^{-1}E$ and $aE \in \exists$ whenever $E \in \exists$ and $a \in S$. Then the following are equivalent:

- (i) $m(\mathcal{F}, S)$ is extremely left measurable.
- (ii) A is not uniformly dense in $m(\mathcal{F}, S)$.
- (iii) $Inf \{||1-h|| : h \in A\} > 0$
- *Proof.* (i) implies (ii). Let $m(\mathcal{F}, S)$ be extremely left measurable with a left invariant measure. Then $\mu(f) = 0$ for all $f \in A$. Therefore, since $m(\mathcal{F}, S)$ is a Banach algebra containing identity, there exists a proper maximal ideal containing A. Hence A is not uniformly dense in $m(\mathcal{F}, S)$.
- (ii) implies (iii). Since A is not uniformly dense in $m(\mathcal{F}, S)$, $1 \in A$. $1 \in \overline{A}$ also where \overline{A} is the closure of A in $\Delta(\mathcal{F}, S)$. Hence inf $\{\|1-h\|: h \in A\} > 0$.
- (iii) implies (i). If Inf $\{||1-h||: h \in A\} > 0$, then A is not dense in $m(\mathcal{F}, S)$. Therefore there exists a multilicative linear functional μ on $m(\mathcal{F}, S)$ which vanishes on A. This μ is clearly a multiplicative left invariant mean such that $\mu(1_{aE}) = \mu(1_E)$ for all $E \in \mathcal{F}$ and $a \in S$.

References

- 1. E. Granirer, Extremely left amenable semigroups, Math. Scand 17(1965) 177-197.
- 2. _____, Extremely left amenable semigroups II, Math. Scand 20 (1967)
- 3. A.T. Lau, Extremely amenable algebras, Pac. J. Math. 33(1970) 328-336.
- 4. T. Mitchell, Constant functions and left invariant mean on semigroups, Trans. Amer. Math. Soc. 119 (1965).
- P.V. Ramakrishnan, Extremely measurable semigroups, J. Madurai University 1 (1978).
- 6. J. Sorenson, Existence of measures invariant under semigroups of transformations, Theis, submitted to l'urdue University.
- 7. C. Wilde and K. Witz, Invariant means and the Stone-Cech compactifications, Pacific. J. Math. 2 (1967).

The School of Mathematics, Madurai Kamaraj University, Madurai-625 021 INDIA