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REMARKS ON FINITE FIELDS II

SHINWON KANG

For every positive integer #, the polynomial

[(5)-(7e 2o it =

n(z) =
* l<g>+<n‘{1)x4-... - (”‘+1>xm, if n==2m+1

m

is called Shinwon polynomial of order . For every odd prime b, the polynomial
S,(2) splits over K=GF(p) and has distinct (p—1)/2 roots in K (See [1]).

In this paper, a number of essential properties of S,(x) are proved and some
number theoretical corollaries are obtained. The polynomial Jlx)=2t"1—1 is of
degree p—1 over K=GF(p) and, by the Fermat’s theorem, has the distinct -1
roots in K=GF(p). So we have the following lemma.

LEMMA 1. For every prime p,
2P 1—1=0 (mod S,(z)).
LEMMA 2. S,(2) =8,-1(2) +28,(x), n>2.

Proof. It follows from the property of the binomial coefficients:

n—r\_ (n—r—1 ‘n—r—1
=) ().
‘THEOREM 1. For all integers n>1>1

Sy (I) =S8, (x) Su—r (‘r) +Isr-—l (1) Sn»—r—l (L) .

Proof. We will prove this theorem by induction on rz:2. From the above le-
mma, we have

Syx) :Sn*l (.T) + 'TSn—-Z (x)
g2 (x) + _Z'S,,_s(l‘) +.2"S,,_2 (.l')
=1+2)Sp2(2) +2S,-3(x)
=82(2) Spoz (@) + 281 (2)S,_3(2).

So the theorem is true for r=2. Supposc that the theorem is true for all integers
less than . Then
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Sa (@) =8,-1(2) Sarir (2) + 28,2 (2) Spyr (2)
:Sr—l (1‘) [Sn—r (.Z) -+ ZS,,,Y r—1 (1) ] + .Z'S,-_g (I) Sn—r (I)
=[8,1(2) + 28,-2(2) 1Su-r (2) + 25,21 (2) Spr-1(2)
=8, (x) 85, (x) + 28, (.’E) Sp-r1 (x) .

So the theorem is true for al integers r>2.

THEOREM 2. For all positive integers n and r,
Sucrin-1@)=0 (mod S,(2)).
Proof. We will prove the theorem by induction on #. If n=1, then
Snirin-1(2) =5, (2).
If n=2, then it follows from Theorem 1 that

Sarr1y-1() =841 (@)
=8, (x) Sp1 () + 28,1 (2) S, ()
=0 (mod S,(x)).

Suppose that the theorem is true for all integers less than #. Then

Satr4n-1 (x)
=8, (2) Sprity-1-r (@, + 28,1 (2) Spiri1y-1-r-1(2)
= Sr (I) Snr+n~l—r (J') ‘}— xSr—l (1‘) SnrJ.»n-*lwr-—l (.7?)
=8,(x) S ety rn—1 (@) + 28,1 (L) S -y rt (u-1-1(T)
=8, (2) S a1 41y (@) + 28,1 () S n_1) (411 ()
=0 (mod S,(z)).

So the theorem is true for all integers .

COROLLARY. For every odd prime p and positive integer n, the polynomial
Sppen-1(x) over K=GF(p) has at least (p—1) /2 solutions in K.

Proof. From Theorem 2, we have S,¢41-1(x) =0 (modS,(2)). Since the poly-
nomial S,(z) has distinct (p—1)/2 roots in K=GF(p), the corollary is valid.

THEOREM 3. For every odd prime p, we have
Sp-1(2) = (14423 2 D/2 (mod p).
Proof. We can easily check the fact that
(p—D 2\ (e (p—r—1
(@7 P12)4r=(P7771) nod p).
from which the theorem follows.

THEOREM 4. For every odd prime p, we have
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Sp(0)=[8p-1(2) +11(p+1) /2
=[28,-2(2) —~1](p—1) (mod p).

Proof. It follows from the following properties:
2(277)=(7771) (mod p)
(p:r)_z_(p——l) <P::_1_1) (mod 2)
where 1<r< (p—1)/2.

THEOREM 5. Let p be an odd prime and asK=GF(p). If S,(a)=0, then
Sp-1(@)=—1 and aS, 3(a) =1 in K.

Proof. From Therem 3, we have

Sy (2) =[Sp1(x) +1](p+1) /2
and 8,(x) ={z8S, 5(x) ~1](p—1)

as a polynomial over K. So, if S,(a) =0 then

0=[S,1(@+11(p+1)/2
and 0=[aS,_2(a) —1](p—1).

This completes the proof.

THEOREM 6. For every odd prime p, p>5, the polynomial Ss—2(z) over K=
GF(p) splits.

Proof. For all ac K=GF(p) such that 14+4a+0, we have

Sp(@) =[Sp1(@) +1](p+1) /2
=[(A+4a) P V2117 (p+1) /2.

But, (1+4a)$P7/2=1 or(1+4a)®V/2= —1. From these it follows that Spla) =1
or Sy(a) =0. On the other hand, from Theorem 4, we have

Sp(@) =[aSp-2(@) —11(p—1),

s0 Sp(a) + (p—1) = (p—1)aS;s-2(a).
Now, if Sy(e)=1 then

0=(p—1)aS;2(a)

and this means S, ;(a) =0. But there are (p—3)/2 distinct elements a such that
1+4a+0 in K, and S, ;(z) is a polynomial over K of degree (p—3)/2. This
completes the proof.

COROLLARY 1. If p is an odd prime with p=—1 (mod 3), then

)



40 Shinwon Kang

Proof. Since p is of the from p=238n—1 for some positive integer z,
SP(.TC) :S3,,_1(.23) =0 (mod Sz(l')).

Since Sp(x) = [Sp,.l(x) +1] <P+1) /2
=[(1+4x) D217 (p+1) /2

in K=GF(p), x=-—1Isatisfies S,(z). So we have 0=8,(—1) in K, and
(=8)#/=—1 (mod ).

COROLLARY 2. If p is an odd prime with p=1 (mod 3), then

5

Proof. Since p is of the form p=3n+1 for some positive integer n, p—2 is of
the form 3z—1. From

Sp(2) =Ssms1 (@) =(p—1) [253-1(x) —1] (raod p)
and Ss,-1(2)=0 (mod S,(z)), we have

S (=D =D (—D=[(—=3)V/2+1](p+1)/2
in K=GF(p). So (—=3)®V/2=]1 (mod p).

COROLLARY 3. Let p be an odd prime. Then

(A) {+1 if p=1 (mod 4)
? —1if p=—1 (mod 4).
Proof. If p=4n—1, then S,(x) =S4,-1(2)=0 (mod S3(z)). Since S3{x) =1+ 2z,
we have 0=S4,_1((?—1)/2) in K=GF(p) and (—1) ¥ P/?=—1 (mod p).
If p=4n+1, then
8p(2) =St (@) = (P~ 1) [aSgu1(x) —1] (mod p)
and Sg((p—1)/2)=1 in K and (—1)*"27/2=1 (mod p).

COROLLARY 4. For every odd prime p, the polynomial 2°—zx—a with 1+4a+0
is drreducible over K=GF(p) if and only if §,(a)=0.

Proof. If 2°—x—a is irreducible over K then clearly S,(a) =0 (See [1]). Co-
nversely, assume that S,(a) =0. Suppose that 2®—2-—a is not irreducible over
K. Then there exists an element t&K such that t>~t—a=0. Then #?*=¢+a, and
the straight forward calculation shows that

t7:=8, (@) t+aS,.2(a), and
P =8, (a)t-FaS,_1(a).

Since S,(a) =0, it follows from Theorem 5 that
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P=—t4+1, thtl=—g,

Since t#=¢ we have 2t=1 and #*= —a. Hence it follows that 1-+4a=0. But this
is a contradiction.
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