BANACH ALGEBRA OF YEH-FEYNMAN INTEGRABLE FUNCTIONALS

JOO SUP CHANG

This thesis consists of three parts, the first two parts concern with the evaluation of some conditional Wiener integrals and the conditional Yeh-Wiener integral, respectively, and the last part deals with a Banach algebra of Yeh-Feynman integrable functionals.

Let T=[0,t] and let $(C(T), \mathbb{N})$, m_w) be the Wiener measure space. J. Yeh has recently introduced the concept of the conditional Wiener integrals $E^w(Z|X)$ on \mathbb{R}^1 of a real-valued Wiener integrable functional Z conditioned by the Wiener measurable functional X on Wiener space. And he evaluated some conditional Wiener integrals $E^w(Z|X)$ conditioned by X(x)=x(t) for x in Wiener space using the inversion formulae for the conditional Wiener integrals.

In Chapter 1, we define the conditional Wiener integral $E^w(Z|X)$ on \mathbb{R}^n for the random vector X given by $X(x) = (x(s_1), (\dots, x(s_n)))$ where $0 = s_0 < s_1 < \dots < s_n = t$ and x in Wiener space. And we evaluate the conditional Wiener integral $E^w(Z|X)$ for this random vector X.

Let $(C_2(Q), \mathcal{U}, m_y)$ be the Yeh-Wiener measure space where $Q = [0, s] \times [0, t]$. Recently K.S. Chang, D.M. Chung, and J.M. Ahn extended Yeh's results for the conditional Wiener integrals to the conditional Yeh-Wiener integrals. In Chapter 2, we evaluate the conditional Yeh-Wiener integral of $\exp\{-\int_0^t \int_0^s V[x(u,v)] dudv\}$ given x(s,t) where x is in $C_2(Q)$ and V is a nonnegative continuous function on \mathbb{R}^1 satisfying the condition

$$\int_{\mathbb{R}^1} V(\xi) \exp\left\{-\frac{\xi^2}{2st}\right\} d\xi < \infty.$$

Cameron and Storvick has recently treated a Banach algebra of functionals on Wiener space. For such functionals they show that the analytic Feynman integral, defined by analytic continuation of the Wiener integral, exists, and they give a formula for this Feynman integral.

In Chapter 3, we define the analytic Yeh-Feynman integral for functionals on Yeh-Wiener space and deal with a Banach algebra of Yeh-Feynman integrable functionals. And we have formulae for these Yeh-Feynman integrals. Finally

Thesis submitted to Yonsei University, December 1984. Degree approved February 1985. Supervisor: Professor Kun Soo Chang.

some results for the analytic Feynman integrals can be extended to the analytic Yeh-Feynman integrals.

Hanyang University Seoul 133, Korea