ON THE DOMAIN OF NULL-CONTROLLABILITY OF A LINEAR PERIODIC SYSTEM

BYUNG HO YOON

0. Introduction

In [1], E.B. Lee and L. Markus described a sufficient condition for which the domain of null-controllability of a linear autonomous system is all of \mathbb{R}^n. The purpose of this note is to extend the result to a certain linear nonautonomous system. Thus we consider a linear control system

$$\frac{dx}{dt} = A(t)x + B(t)u$$

in the Euclidean n-space \mathbb{R}^n where $A(t)$ and $B(t)$ are $n \times n$ and $n \times m$ matrices, respectively, which are continuous on $0 \leq t < \infty$ and $A(t)$ is a periodic matrix of period ω. Admissible controls are bounded measurable functions defined on some finite subintervals of $[0, \infty)$ having values in a certain convex set Ω in \mathbb{R}^m with the origin in its interior. And we present a sufficient condition for which the domain of null-controllability is all of \mathbb{R}^n.

1. Preliminaries

Consider a linear control system in \mathbb{R}^n

$$(1.1) \quad \frac{dx}{dt} = A(t)x + B(t)u$$

Where $A(t)$ and $B(t)$ are $n \times n$ and $n \times m$ matrices, respectively, which are continuous on $[0, \infty)$ but not necessarily periodic.

For any bounded measurable control $u(t)$ on $[t_0, t_1]$ ($t_0 \geq 0$) and for any initial state x_0 at t_0, (1.1) has a unique solution $x(t)$ with $x(t_0) = x_0$ existing on $[t_0, t_1]$ and this solution is given by

$$(1.2) \quad x(t) = F(t_0; t)x_0 + \int_{t_0}^{t} F^{-1}(t_0; s)B(s)u(s)ds$$

where $F(t_0; t)$ is a fundamental matrix of the homogeneous system

$$\frac{dx}{dt} = A(t)x$$

with $F(t_0; t_0) = I$ (the identity matrix).

This research was supported by MOE grant, 1984.
Definition 1. We say that the system (1.1) is completely controllable at \(t_0 \geq 0 \) if, for any \(x_0, x_1 \) in \(R^n \) there exists a bounded measurable control \(u(t) \) on some finite interval \([t_0, t_1]\) with values in \(R^n \) such that

\[
x_1 = F(t_0; t_1)x_0 + F(t_0; t_1) \int_{t_0}^{t_1} F^{-1}(t_0; s) B(s) u(s) \, ds,
\]

that is, there exists a bounded measurable control on some finite interval \([t_0, t_1]_c which steers \(x_0 \) to \(x_1 \).

It is well known that the system (1.1) is completely controllable at \(t_0 \) iff, for any \(t_1 > t_0 \), the matrix

\[
M(t_0, t_1) = \int_{t_0}^{t_1} F^{-1}(t_0; t) B(t) B'(t) F^{-1'}(t_0; t) \, dt
\]

is nonsingular where the prime denotes the transposed matrix.

2. Domain of Null-Controllability

Let \(\Omega \) be a given convex set in \(R^n \) containing the origin in its interior and consider a linear control system in \(R^n \)

\[
(2.1) \quad \frac{dx}{dt} = A(t)x + B(t)u, \quad u \in \Omega
\]

where \(A(t) \) and \(B(t) \) are same as in (1.1) and admissible controls are bounded measurable functions on some finite subinterval of \([0, \infty) \) having values in \(\Omega \).

Definition 2. The domain of null-controllability of (2.1) at \(t_0 \geq 0 \) is the set \(C(t_0) \) of those points \(x_0 \) in \(R^n \) which can be steered to the origin by some admissible control; that is, there exists a bounded measurable control \(u(t) \) on some interval \([t_0, t_1]\) having values in \(\Omega \) such that

\[
F(t_0; t_1)x_0 + F(t_0; t_1) \int_{t_0}^{t_1} F^{-1}(t_0; s) B(s) u(s) ds = 0
\]
equivalently,

\[
x_0 = -\int_{t_0}^{t_1} F^{-1}(t_0; s) B(s) u(s) \, ds
\]

It is clear that \(C(t_0) \) is convex and \(0 \in C(t_0) \).

Theorem 1. The domain \(C(t_0) \) of null-controllability at \(t_0 \geq 0 \) contains a neighborhood of the origin iff the system (2.1) is completely controllable at \(t_0 \).

Proof. For \(t_1 > t_0 \), let

\[
M(t_0, t_1) = \int_{t_0}^{t_1} F^{-1}(t_0; t) B(t) B'(t) F^{-1'}(t_0; t) \, dt
\]

Then \(M(t_0, t_1) \) is a symmetric matrix which is positive semidefinite.

Suppose that the system (2.1) is completely controllable at \(t_0 \). Then \(M(t_0, t_1) \) is nonsingular for any \(t_1 > t_0 \). Choose any \(t_1 > t_0 \). Since \(F^{-1}(t_0; t) \) and \(B(t) \) are
continuous on \([t_0, t_1]\), there exists a constant \(K_1 > 0\) such that \(|F^{-1}(t_0; t)| \leq K_1\) and \(|B(t)| \leq K_1\) for all \(t_0 \leq t \leq t_1\). Let

\[|M(t_0, t_1)| = K_2 > 0.\]

Choose \(r > 0\) so that \(|u| < r\) implies \(u \in \Omega\). Let \(x\) be any point in \(\mathbb{R}^n\) such that \(|x| < \frac{r}{K_1^2 K_2}\). If we let, for \(t_0 \leq t \leq t_1\),

\[\xi = -M(t_0, t_1)^{-1} x, \quad u(t) = B'(t) F^{-1'}(t_0; t) \xi\]

then

\[|u(t)| = |B'(t) F^{-1'}(t_0; t) \xi| \leq K_1^2 K_2 |x| < r\]

so that \(u(t) \in \Omega\) for all \(t_0 \leq t \leq t_1\). Moreover,

\[- \int_{t_0}^{t_1} F^{-1}(t_0; t) B(t) u(t) dt = - \int_{t_0}^{t_1} F^{-1}(t_0; t) B(t) B'(t) F^{-1'}(t_0; t) \xi dt\]

\[= -M(t_0, t_1) \xi = x.\]

Thus \(x \in C(t_0)\); that is \(C(t_0)\) contains the set

\[\left\{x \in \mathbb{R}^n : |x| < \frac{r}{K_1^2 K_2}\right\}\]

Conversely, suppose \(C(t_0)\) does not contain a neighborhood of the origin. Then \(C(t_0)\) lies on a hyperplane passing through the origin. Thus there exists a nonzero vector \(\xi \in \mathbb{R}^n\) such that, for any \(t_1 > t_0\) and for any admissible control \(u(t)\) on \([t_0, t_1]\),

\[\int_{t_0}^{t_1} \xi F^{-1}(t_0; t) B(t) u(t) dt = 0.\]

For any \(t_1 > t_0\), consider the control \(u(t) = B'(t) F^{-1'}(t_0; t) \xi'\) on \([t_0, t_1]\). For \(|\xi|\) sufficiently small \(u(t) \in \Omega\) for all \(t_0 \leq t \leq t_1\), and we must have

\[\int_{t_0}^{t_1} \xi F^{-1}(t_0; t) B(t) B'(t) F^{-1'}(t_0; t) \xi' dt = -\xi M(t_0, t_1) \xi' = 0.\]

Thus \(M(t_0, t_1)\) is singular so that system (2.1) is not completely controllable at \(t_0\).

3. Linear Periodic System

Now consider a linear periodic system in \(\mathbb{R}^n\)

\[
\frac{dx}{dt} = A(t) x - B(t) u, \quad u \in \Omega
\]

where \(A(t), B(t)\) and \(\Omega\) are same as in (2.1) and, in addition, we assume that \(A(t)\) is a periodic matrix of period \(\omega\) on \([0, \infty)\).

If \(F(t)\) is a fundamental matrix of the corresponding homogeneous system

\[
\frac{dx}{dt} = A(t) x
\]
then, by Floquet's theorem, there exists a periodic nonsingular matrix $P(t)$ of period ω and a constant matrix R such that $F(t) = P(t) \exp(tR)$. We call the eigenvalues of the nonsingular matrix $\exp(\omega R)$ the multipliers of the system (3.2) and the eigenvalues of the matrix R are called the characteristic exponents of the system (3.2).

Following lemma is well known.

Lemma. If all the characteristic exponents of the system (3.2) have negative real parts, then the zero solution of (3.2) is asymptotically stable.

Combining Theorem 1 and the above lemma, we obtain the following theorem which is the main result.

Theorem 2. For the linear periodic system (3.1), suppose
(1) 0 is in the interior of Ω
(2) system (3.1) is completely controllable at every $t' \geq t_0$
(3) characteristic exponents of (3.2) have negative real parts.

Then the domain $C(t_0)$ of null-controllability of (3.1) at t_0 is all of \mathbb{R}^n.

Proof. Let x_0 be any point in \mathbb{R}^n and choose the control $u(t)$ which identically zero for all $t \geq 0$. If $x(t)$ is the solution of (3.1) corresponding to $u(t)$ with $x(t_0) = x_0$, then, by condition (3), $x(t')$ belongs to $C(t')$ for sufficiently large t'. But then there exists an admissible control $v(t)$ on some interval $[t', t_1]$ which steers $x(t')$ to the origin.

References

Sogang University
Seoul 121, Korea