MAXIMAL IDEALS IN POLYNOMIAL RINGS

YOUNG HYUN CHO

1. Introduction

Let R be a commutative noetherian ring with $1 \neq 0$, denoting by $\nu(I)$ the cardinality of a minimal basis of the ideal I. Let A be a polynomial ring in $n>0$ variables with coefficients in R, and let M be a maximal ideal of A. Generally it is shown that $\nu(MA_M) \leq \nu(M) \leq \nu(MA_M) + 1$. It is well known that the lower bound is not always satisfied, and the most classical examples occur in non-fractional Dedekind domains. But in many cases, (e.g., A is a polynomial ring whose coefficient ring is a field) the lower bound is attained.

In [2] and [3], the conditions when the lower bound is satisfied is investigated. Especially in [3], it is shown that $\nu(M) = \nu(MA_M)$ if $M \cap R = p$ is a maximal ideal or A_M (equivalently $R_\mathfrak{p}$) is not regular or $n \geq 1$. Hence the problem of determining whether $\nu(M) = \nu(MA_M)$ can be studied when p is not maximal, A_M is regular and $n = 1$. The purpose of this note is to provide some conditions in which the lower bound is satisfied, when $n = 1$ and R is a regular local ring (hence A_M is regular).

2. Cases when lower bound is satisfied

Let R be a regular local ring with the maximal ideal m in this section. Then we readily have the following Theorem.

Theorem 2.1. If M is a maximal ideal in $A = R[X]$ and $p = M \cap R$, and R/p is regular, then $\nu(M) = \nu(MA_M)$. Hence in this case, M is an ideal theoretic complete intersection.

Proof. Since R/p is a regular local ring, R/p is a Unique Factorization Domain. But $M/p R[X] \subset A/p R[X] = (R/p)[X]$. Now $M/p R[X]$ is an ideal of height 1 in U.F.D., $\nu(M/p R[X]) = 1$. So $\nu(M) \leq \nu(p) + 1 = htp + 1$, since R/p is regular

$\nu(M) = \nu(p R_p) + 1 = \nu(MA_M)$ (See Lemma 1. [3])

Therefore $\nu(M) = \nu(MA_M)$.

Now R_p is regular, equivalently A_M is regular, $\nu(MA_M) = ht(MA_M) = ht(M)$. So M is generated by a regular sequence. This means M is an ideal theoretic complete intersection.

This work was supported by a grant from Ministry of Education, Korea in 1984.

--- 117 ---
But we don’t have enough evidence when R/p is singular.

In the case when R is a regular local ring of lower dimension it is shown that the lower bound holds for any maximal ideal M. For $\dim R = 0$, p should be a maximal ideal, hence by Theorem 2 in [3], it is true. If $\dim R = 1$ or $\dim R = 2$, it is proved in [4] and [5] respectively. Now we will conditionally generalize this fact when $\dim R > 2$. For this, we need the following basic theorems.

Theorem 2.2. If R is a noetherian ring and M a maximal ideal in $R[X_1, \ldots, X_n]$ and $M \cap R = p$, then $ht M = ht p + n$.

Proof. [6, Theorem 149].

Theorem 2.3. If R is a noetherian ring and $M \subseteq R[X_1, \ldots, X_n]$ is maximal and $p = M \cap R$ then R/p is a semilocal ring of dimension ≤ 1.

Proof. [1].

Lemma 2.4. If R is a regular local ring of dimension $d \geq 0$ and M is a maximal ideal in $A = R[X]$, then $ht M \geq d$.

Proof. Set $M \cap R = p$. Then by Theorem 2.3, $\dim R/p \leq 1$. Since R is a regular local ring $\dim R - htp \leq 1$. Hence $htp = d$ or $d - 1$. Now Lemma follows from Theorem 2.2.

Next, we come to state the main theorem.

Theorem 2.6. Suppose R is a regular local ring with the maximal ideal m and $\dim R = d \geq 0$. If M is a maximal ideal in $A = R[X]$ with a monic polynomial of degree greater than 1, then $\nu(M) = \nu(MA M)$. Hence M is an ideal theoretic complete intersection.

Proof. When $d \leq 2$, Theorem has been shown without the above extra condition. Hence we’ll consider the case $d > 2$, and prove the theorem by induction. If $htM = d + 1$, then by Theorem 2.2, $htM \cap R = d$, hence $p = M \cap R$ is the maximal ideal. In this case by Theorem 2 in [3] theorem comes true. Therefore let’s see the case when $htM = d$. First, we’ll claim that there exists $\alpha \in p \setminus m^2$. For the claim choose a monic polynomial f in M of degree ≥ 1. Consider $R[f]$. Then $R[X]$ is integral over $R[f]$. If we set $N = M \cap R[f]$, then N is a maximal ideal in $R[f]$ such that $N \cap R = M \cap R$. (Since $htp = d - 1$, $p \neq m^2$.) Suppose $p \subseteq m^2$. Then $N + m^2 R[f] = R[f]$. Hence $1 = (a_0 + a_1 f + \cdots + a_n f^n) + (b_0 + b_1 f + \cdots + b_j f^j)$. But $a_0 + b_0 = 1$, $a_0 \in N$ (since $f \in N$). Hence $a_0 \in p$, $b_0 \in m^2$, therefore $1 \in m^2$, this is absurd. This means that $p \subseteq m^2$, and we can find $\alpha \in p \setminus m^2$.

Let $\bar{R} = R/(\alpha)$, $\bar{M} = M/\alpha R[X]$. Then \bar{R} is a regular local ring of dimension $d - 1$ and \bar{M} is a maximal ideal in $\bar{R}[X]$ satisfying the condition. By induction hypothesis $\nu(\bar{M}) = \nu(\bar{M} R[X, \bar{r}])$. Since $\bar{R}[X]$ is regular, $\nu(\bar{M}) = h\bar{t}(\bar{M}) = d - 1$ and therefore $\nu(M) = d$. Hence the proof is completed.
References

Seoul National University
Seoul 151, Korea