MAXIMAL IDEALS IN POLYNOMIAL RINGS

Young Hyun Cho

1. Introduction

Let R be a commutative noetherian ring with $1\neq 0$, denoting by $\nu(I)$ the cardinality of a minimal basis of the ideal I. Let A be a polynomial ring in n>0 variables with coefficients in R, and let M be a maximal ideal of A. Generally it is shown that $\nu(MA_M) \leq \nu(M) \leq \nu(MA_M) + 1$. It is well known that the lower bound is not always satisfied, and the most classical examples occur in nonfactional Dedekind domains. But in many cases, (e.g., A is a polynomial ring whose coefficient ring is a field) the lower bound is attained.

In [2] and [3], the conditions when the lower bound is satisfied is investigated. Especially in [3], it is shown that $\nu(M) = \nu(MA_M)$ if $M \cap R = p$ is a maximal ideal or A_M (equivalently R_P) is not regular or n > 1. Hence the problem of determining whether $\nu(M) = \nu(MA_M)$ can be studied when p is not maximal, A_M is regular and n = 1. The purpose of this note is to provide some conditions in which the lower bound is satisfied, when n = 1 and R is a regular local ring (hence A_M is regular).

2. Cases when lower bound is satisfied

Let R be a regular local ring with the maximal ideal m in this section. Then we readily have the following Theorem.

THEOREM 2.1. If M is a maximal ideal in A=R[X] and $p=M\cap R$, and R/p is regular, then $\nu(M)=\nu(MA_M)$. Hence in this case, M is an ideal theoretic complete intersection.

Proof. Since R/p is a regular local ring, R/p is a Unique Factorization Domain. But M/p $R[X] \subseteq A/pR[X] \cong (R/p)[X]$. Now M/p R[X] is an ideal of height 1 in U. F. D., $\nu(M/p$ R[X]) = 1.

So $\nu(M) \le \nu(p) + 1 = htp + 1$, since R/p is regular

$$=\nu(p R_p)+1=\nu(MA_M)$$
 (See Lemma 1, [3])

Therefore $\nu(M) = \nu(MA_M)$.

Now R_p is regular, equivalently A_M is regular, $\nu(MA_M) = ht(MA_M) = ht(M)$. So M is generated by a regular sequence. This means M is an ideal theoretic complete intersection.

This work was supported by a grant from Ministry of Education, Korea in 1984.

But we don't have enough evidence when R/p is singular.

In the case when R is a regular local ring of lower dimension it is shown that the lower bound holds for any maximal ideal M. For dimR=0, p should be a maximal ideal, hence by Theorem 2 in [3], it is true. If dim R=1 or dimR=2, it is proved in [4] and [5] respectively. Now we will conditionally generalize this fact when dimR>2. For this, we need the following basic theorems.

THEOREM 2.2. If R is a noetherian ring and M a maximal ideal in $R[X_1, \dots, X_n]$ and $M \cap R = p$, then htM = htp + n.

Proof. [6. Theorem 149].

THEOREM 2.3. If R is a noetherian ring and $M \subset R[X_1, \dots, X_n]$ is maximal and $p=M \cap R$ then R/p is a semilocal ring of dimension ≤ 1 . Proof. [1].

Lemma 2.4. If R is a regular local ring of dimension $d \ge 0$ and M is a maximal ideal in A=R[X], then ht $M \ge d$.

Proof. Set $M \cap R = p$. Then by Theorem 2.3, dim $R/p \le 1$. Since R is a regular local ring dim $R-htp \le 1$. Hence htp = d or d-1. Now Lemma follows from Theorem 2.2.

Next, we come to state the main theorem.

Theorem 2.5. Suppose R is a regular local ring with the maximal ideal m and $\dim R = d \ge 0$. If M is a maximal ideal in A = R[X] with a monic polynomial of degree greater than 1, then $\nu(M) = \nu(MA_M)$. Hence M is an ideal theoretic complete intersection.

Proof. When $d \leq 2$, Theorem has been shown without the above extra condition. Hence we'll consider the case d > 2, and prove the theorem by induction. If htM=d+1, then by Theorem 2.2, $htM\cap R=d$, hence $p=M\cap R$ is the maximal ideal. In this case by Theorem 2 in [3] theorem comes true. Therefore let's see the case when htM=d. First, we'll claim that there exists $\alpha \in p \setminus m^2$. For the claim choose a monic polynomial f in M of degree ≥ 1 . Consider R[f]. Then R[X] is integral over R[f]. If we set $N=M\cap R[f]$, then N is a maximal ideal in R[f] such that $N\cap R=M\cap R=p$. (Since htp=d-1, $p\neq m^2$.) Suppose $p\subseteq m^2$. Then $N+m^2$ R[f]=R[f]. Hence $1=(a_0+a_1f+\cdots+a_nf^n)+(b_0+b_1f+\cdots+b_sf^s)$. But $a_0+b_0=1$, $a_0\in N$ (since $f\in N$). Hence $a_0\in p$, $b_0\in m^2$, therefore $1\in m^2$, this is absurd. This means that $p\not\subset m^2$, and we can find $\alpha\in p\setminus m^2$. Let $R=R/(\alpha)$, $R=M/\alpha R[X]$. Then R is a regular local ring of dimension d-1 and M is a maximal ideal in R[X] satisfying the condition. By induction hypothesis $\nu(M)=\nu(MR[X]_{\overline{M}})$. Since R[X] is regular, $\nu(M)=ht(M)=d-1$ and therefore $\nu(M)=d$. Hence the proof is completed.

References

- 1. E. Artin and J. Tate, A note on finite ring extensions, J. Math. Soc. Japan 3, (1951), 74-77, MR 13, 427.
- 2. E. Davis and A. Geramita, *Maximal ideals in polynomial rings*, Conf. on Commutative Algebra, Lecture Notes in Math., Vol **311**, Springer-Verlag, Berlin and New York, 1973, pp. 57-60.
- 3. E. Davis and A. Geramita, Efficient generation of maximal ideals in polynomial rings, Trans. Amer. Math. Soc. Vol. 231, No. 2, 1977, pp. 497-505.
- S. Endo, Projective modules over polynomial rings, J. Math. Soc. Japan 15 (1963), 339-352, MR 27#5808.
- A. Geramita, Maximal ideal in polynomial rings, Proc. Amer. Math. Soc. Vol. 41, No. 1, 1973, pp. 34-36.
- 6. I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR 40#7234.

Seoul National University Seoul 151, Korea