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Nomenclature ————————m T, : Reference temperature, that of the outer
A, :Heat generated by heat sources per unit cylinder
time and per unit volume ¢ : Time
Cr  :Specific heat at constant pressure u : Velocity vector having component(V,, Vo)
g : Gravitational acceleration vector a : Thermal-diffusivity
K : Thermal conductivity 8 : Thermal expansion coefficient
L : A characteristic length, taken here as the g : Vorticity component in the problem plane

e oV, V oV,
gap size(=r,—7r:) ( aro+ re —,1, 60)

P : Pressure
Pr  : Prendtl number

<

: Kinematic viscosity

Ra., : Rayleigh number, see Eq.(9) : Density

7 : Nondimensional distance, see Eq.(4) - Nondimensional temperature, see Eq.(4)

(7, 6) : Cylindrical coordinate : Stream function, see Eq.(5)

le o

T : Tempeature : Vorticity vector
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0 : Refers to the outer cylinder
7 : Refers to the inner cylinder
w : Refers to the inner cylinder wall

1. Introduction

Natural convection in horizontal annuli has
been investigated for decades theoretically and
exparimentally. Kuehn and Goldstein‘® introduce
extensive literature on this subject, where a va-
riety of methods such as smoke-flow visualizat-
ion, Mach-Zehnder interferometry and computa-
tional techniques are described.

Recently, the laminar analysis on the conce-
ntric annli has been extended to the turbulent
regime by Farouk and Guceri®® for Rayleigh
numbers from 10° to 107, by using two-equation
turbulence model. Other kind of extension is also
made by Cho,Chang and Park®®, who studied
the eccentricity effect in the horizontal annuli
using computational methods in the bipslar coor-
dinate system.

Contrary to the constant wall tempzrature
usually assumed in the previous research, Huetz
and Petit®® considered the case of constant heat
flux on one wall, while the other wall remain-
ing isothermal. Van De Sande and Hamer®
investigated experimentally the heat flux-driven
flow in cylindrical annuli. Rotem‘® studied the
free convective interaction between a solid core,
which is heat dissipating as well as heat cond-
ucting, and a fluid layer in the cylindrical ann-
ular gap by expanding the stream function and
the temperature in terms of the Grashof number
and the Rayleigh number, respactively.

There has been relatively few studies on the
natural convection by heat source distributed in
one of the fluid layers under interaction, despite
its many applications in the nuclear and mech-
anical engineering. The problem studied in the
referencet™ was heat generating fluid contained

in the vertical cylinders and spheres with isoth-
ermal wall conditions.

The steady state solutions were numerically
obtained and an experiment was also carried by
using the radioactive tritium gas for comparison
purpose. For reacting gases in a horizontal cyli-
nder, Jones® used A.D.I. method to investigate
the natural convection due to the exothermicity
of the gas, where the reaction rate of the heat
sources follows Arrhenius’s law for temperature
depzndence.

In the present paper, we studied the laminar
natural convection in a concentric multi-layer
composite system, the outer annular flow and
the inner core with partition inbetween. The
inner core fluid is assumed heat generating and
the outer surface of the annulus is kept isother-
mal. Difficulty of the problem lies in the fact
that the thermal system consists of multiple la-
yers of fluid and solid when the partitioning wall
has finite thickness, and that the thermal con-
ditions at the interface of these layers are unk-
nown a priori. In particular, when the partitio-
ning wall has negligible thickness, the problem
is reduced to a two-layer flow system. Param-
etric effects of the Rayleigh number, Prandtl
number and the diameter ratio on the flow cha-
racteristics in the annulus are presented in the

subsequent sections.

2. Governing Equations

An infinitely long horizontal cylindrical co-
necentric annulus is filled with a Newtonian fluid
The outer cylinder wall of the annulus(r=7,)
is held at a uniform temperature, and the part-
itioning wall(r=7; and r=R) is subject to
heat flux whose local intensities are not kn-
own a priori. The fluid in the cylindrical core
is assumed to have the same transport properties
as that in the annulus except that it is heat
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Fig. 1 Grid system for the composite layer

generating uniformly. The system is symmetri-
cal with respect to a vertical axis passing through
the center, and the variable grid is shown in
Fig. 1.

2.1. Fluid Media
The steady Boussinesq Equations in dimensi-
onal form are

V=0 ®
Du* 1
Z == ypP* 2, %
~Di o VeTVE
+6(T*—Tyg @
*
oCr I =K T +mA, ®

where A, represents the heat generated per unit
volume and per unit time, which is a constant.
The same equations apply to both the annulus and
the core, except that m=0 for the annulus and
m=1 for the cylindrical core.

Introduce the following dimensionless quant-

ities
sk
length r= "L
velocity u*

(vector) %=— 7L

temperature ¢= 70[:2/—[“{— @
vorticity _ o
(vector) =~  a/L*
We define the stream function
_1 o _ o
Vi=or 2 Vo= ®)

The nondimensional form of the governing
equations are in the cylindrical coordinates
2
0% + 1 e w4 0%

ort v or 1t o06%
=
+RaL<sin6—gf—+ C(:,SH %)

_g;gf +_%_ _gg'_.{._}z_ _g:;%—:—c @)
2L ot 28
=V. gf + Z" —g—g’——m ®

where { is the non-zero vorticity component in
the plane of the problem under consideration.
The Rayleigh number is defined based on the
source strength A, and the annulus gap size L:
pan SR :
ﬂLZT- 9)

2.2. Partitioning Wall

When the thickness of the partitioning wall
is finite, the wall constitutes a third thermally-
active layer in addition to the two main conv-
ection layers separated by its existence. The
two-dimensional diffusion equation applies here

0’6 .1 94 . 1 9% _
o7 T or vt 90F (10

2.3. Boundary Conditions

Because of symmetry of the flow system, the
half region (0°<<#<C180°) only will be consid-
ered. The imposed boundary conditions are
at =R, 7; and 7,,
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at r=r,, $¢=0 an
and at =0 and =,
=0
-
-
0
=0
Whether the wall thickness is finite or negligi-

ble, energy is conserved locally and there is no
abrupt change in temperature or heat flux at
the fluid-solid or fluid-fluid interface. Thus, the
thermal boundary condition at the interfaces »
=R and r=v; is

¢1=¢, (Dirichlet type)
or 12)

K, gﬁﬁ 1:]{2 24 lZ(Neumann type)

or

where subscripts 1 and 2 indicate the two ma-
terials in contact at the interface.

3. Finite Difference Method

Near the wall, the gradient of the flow cha-
racteristics is high. In this study, denser grid
is provided near the wall than in other regions
by an abrupt change in grid size, whose ratio is
kept less than 2 for accuracy. The mesh system
is shown in Fig. 1. At the center, Cartesian
coordinates are patched to the cylindrical coor-
dinates to remove the coordinate singularity, as
shown in the left hand side of Fig. 1. For va-
riable mesh system, the first and the second
order derivatives can be discretized as

or _ I'i—Ti
YRy Wy ) 1

7 _ iy —(Q+5HT+HST
o2 - (AZZ)Z (14)

where S=42,/42,, and I’ and 2 represent the
dependent and independent variables, respectively.

Each of the governing equations is then discre-
tized into the following general form
T i=Ai i Digr.i+Buyi Tigy i+Ch i Ty iy
+D;i,; Tiyioi+ Esy s (15
The successive overrelaxation(S.0.R.) technique
is adopted to solve the above penta-diagonal
matrix iteratively.

In order to eliminate skewness of the point
S.O.R., the sweep direction is chosen to be op-
posite in consecutive iteration loop for each va-
riable, reference(9). A careful choice of relax-
ation factors was crucial to the convergence.

The equations were solved in the following
steps.

(1) Assume the initial and boundary conditions

(2) Solve the cylindrical core region with a
Neumann type thermal boundary condition
at the interface 7=2R.

(3) Solve the annular region with a Dirichlet
type thermal boundary condition at the
interface r=7..

(4) Solve the conduction region by the boun-
dary integral equation method which is
given in the references (10) and (11),
with the boundary conditions of Dirichlet
type at #=R and of Neumann type at 7=
7;. These boundary conditions are copied
from the flow properties of the adjoining
flow at the interface using Eq.(12).

Then we iterate through steps 2,3 and 4 until
convergence is achieved. The boundary conditi-
ons necessary in steps 2 and 3 are copied from
the conduction region by using Eq.(12), again.
When the wall thickness is negligible, step 4 is
omitted and the boundary conditions for steps 2
and 3 are obtained by transcribing the flow pro-
perties from the adjoing region, Eq.(12).
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4. Results and Discussion

4.1. Normalization

In order to compare the present results with
the corresponding states of conduction, the non-
dimensional temperature and its gradient are
respectively normalized by those of the corresp-
onding conduction problem. In the corresponding
problem, the fluid in the annular region is fro-
zen with time, its thermal conductivity being
equal to that of the fluid under consideration.
The inner boundary »=#; and the outer bound-
ary r=rv, are isotherms of different values: The
temperatures at r=v, is fixed by ¢=0 and at
y=v; a constant temperature is assigned such
that the total heat flux is equal to that of the
current problem for each Rayleigh number.

The temperature, its gradient and total heat
flux of the corresponding conduction problem
are, in nondimensional form,

$= e (16)
00 | _  —¢ia .1

oY lea ln(ro/r;) T (17)
thl?i% asy

where ¢;.a is the temperature at the inner bou-
ndary r=r; in the conduction problem, and @

is the heat flux scaled by the quanity A,L2
The dimensionless total heat flux generated in
the cylindrical core region is

Q=zR? a9
By equating Eq.(18) and Eq.(19),
2
Gios= " InCr/7) @)

The normalized temperature and its gradient
are, respectively,

%

$= Qicd @D
96 :
op __ or
or T o4 (22)
o lea

667

Let ¢..» vepresent the average value of ¢ along
the inner boundary, then the relation between
diev and @ is in a simplified form

— aiav

R @»

where R is the thermal resistance of the ann-
ular gap. As @ in dimensionless form is a con-
stant from Eq(19), @i linearly depends on R,
that is, ¢:..s represents a measure of thermal re-
sistance of the annular gap. The convective ef-
fect on the heat transfer through the gap is ve-
rified by the average normalized temperature.
Fig. 2 represents the local variation of ¢, in te-
rms of the Rayleigh number, along the inner

~
Pied

ad

a0
o

102
e—— 10
g
% o0 55. 0. 135, vec. ©

Fig. 2 Circumferential temperature distributions on
the inner cylinder (r=7:) with negligible
wall thcikness

Fig. 8 Concentric annulus with isothermal bounda-
ries: —present, ---Keuhn and Goldstein‘®,
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cylinder wall with negligible thickness. We can
read that the normalized temperature decreases
in average with the increase of the Ray;, refle-
cting the fact that effect of convection reduces
the thermal resistance in the gap.

To validate the current method, a test calcu-
laton was carried out for a pure annular problem,
Fig. 3 compares the result of the present method
with that of Kuehn and Goldstein® for Ra, =107,
Pr=0.7 and diameter ratio 2.6, when the inner
and outer boundaries of the annulus are isothe-
rms. The two results compare very well in the
boundary layers, although some minor discrep-
ancy is developed in the central region of the
annulus where grid is relatively coarse.

4.2. Effect of the Wall Thickness

When the thermal conductivity of the partit-
ioning wall is much higher than that of the
surrounding fluids, and the wall is quite thick,
the condition at »=7; becomes nearly isothermal,
As mentioned earlier, the annuli with isothermal
boundaries have been investigated a lot.

In the present study, we took the wall thick-
ness as one twentieth and a hundredth of the
annular gap and compared the result with that
of the negligible wall thickness.

Fig. 4 shows the three cases, where the wall
thickness is taken as zero, L/20 and /100,
respectively. When the thermal conductivity of
the wall is very high, the temperature gradient
in the fluid at the interface must be also very
high by the second equation of Eq.(12). Then,
it requires an excessive degree of grid clustering
near the wall for proper computational accuracy
and stability. Due to the limited computer res-
ources, however, we took the wall conductivity
as 15 to 50 times that of the fluid. Nevertheless,
for this relatively low values of conductivity we
were able to draw some meaningful conclusion
in a limited scope on the effect of the wall

= g,

—8— L¥ =L/20 , Rw = 15 X
Lw = L/100, Rw = 15 K

1)972)1'

“0.00° 45, 2g. 135. DD

Fig. 4(a) Temperature Gradient on 7=r:(inner wall)
and r=r, (outer wall) of the annulus for
fixed wall conductivity

-8

Lw = L/100, Kw = 50 K
v = L/100  Rw = 15 K

< e
A

“b.00 45, 50 135. 180,

Fig. 4(b) Temperature Gradient on r=7: (in}ler wall)
and 7=y, (outer wall) of the annulus for
fixed wall thickness

thickness. Fig. 4 (a) shows the gradient of the

normalized temperature along the annular boun-

daries for different wall thickness, with Ra.=
1.0x10°%, Pr=0.7, diameter ratio 7,/7:=2.6
and wall conductivity Kw=15K. The results do
not deviate much from each other. Fig.4(b) sho-
ws the cases of two different wall conductivities
Kw=15K and 50K. Almost no difference is re-
vealed between the two. As a result, when the
partitioning wall is thin and its thermal condu-
ctivity is relatively not so high in comparison
with that of the surrounding fluid, the effect of
the wall thickness can be safely neglected in
engineering sense. We now further investigate
the effect of the other parameters in the rema-
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ining sections assuming negligible wall thickness.

4.3. Effect of the Rayleigh Number

The effect of Rayleigh number, in the para-
meter range studied, turns out much more dist-
inguished than the others.

Around Rap=108, transition from the condu-
ction mode begins to occur. In Fig. 5(c), the
temperature distribution in the radial direction
does not deviate much from that of the pure co-
nduction given by Eq.(16). The isotherms in
Fig. 6(a) shows that they are circles with slight
eccentricity in both of the cylindrical core and
the annular gap. This has been called “Pseudo-
Conductive regime” by Grigull and Hauf"?,
since the overall heat transfer characteristics are
essentially those of the pure conduction.

As the Rayleigh number increases, the “pseudo-
conductive mode is changed. The isotherms are
deformed more and more in the upper region of
the annulus and in the recirculating region, su-
ggesting growing intensity of the convection.
The thermal boundary layer develops accordingly
in the annular gap near the lower portion of
the cylinder 7=7: and near the upper portion
of the outer boundary »=r, The development
procedure of this thermal convection with the
increasing Rayleigh number is sequentially sho-
wn in Figs. 5~11.,

It is interesting to note the change in the ra-
dial temperature distribution for different Rayle-
igh numbers. The temperature curves are spread
apart for different 8 up to Raer=10% making the
curves fatter near the middle of the annular gap
with increasing Rayleigh number,as observed in
the ¢ plots in Figs. 5~8. This increased vari-
ation of the normalized temperature ¢ is due to
the rapid development of the convection layers,
which induces lower temperature toward the
relatively inert bottom region (6=180°) and
higher temperature toward the buoyant upper

(a) Streamlines and isotherms
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(c¢) Radial temperaturé distribution
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(a) Streamlines and isotherms
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(¢) Radial temperature distribution

(¢) Radial temperature distribution
Fig. 7 Ra.=6.0Xx10% Pr=0.7, 7,/7:=2.6

Fig. 6 Ra.=3.0X10% Pr=0.7, 7:/7:=2.6
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region (0=0°) of the annulus. For Ra.>104%,
Figs. 9~11, the normalized temperature beco-
mes widely flat in the gap except near the bou-
ndaries, and its maximum values at the partit-
ioning wall =7, are much lowered. This is due
to the fact that as Ra. (10%) increases, the
recirculating current becomes stronger, causing
the thermal resistance of the annular gap to de-
crease significantly: recall the earlier discussion
associated with Fig. 2.

Irrespective of the Rayleigh numbers, the no-
rmalized total heat flux remains a constant for
a given core radius R, see Eq.(19). Hence, the
local temperature gradicnt presented in the sec-
ond plot of Figs. b~14 indicates the degree of
contribution to the total heat transfer from the
local position of the boundaries. At Ra,=10%in
Fig. 5, the flow is in the so-called pseudo-con-
ductive regime, so the temperature gradients are

almost equal to unity on both of the boundaries.

The mode of heat transfer on the outer boundary
r=r, depends on Rg: more than it does on the
inner boundary #=v#:.. As Ra: increases, the
strong recirculating current causes the gradient
on the outer boundary to experience large vari-
ation; on the inner boundary, relatively smaller
variation is made around the value of unity
since the cylinder 7=v7; is amid the overall
convection and the boundary layer is relatively
well developed throughout along its surface.

It is worthwhile to note some characteristic
difference in the radial temperature gradient be-
tween the present problem and the case of con-
centric annulus with isothermal boundaries®®,
In the latter case, the temperature gradient along
r=r; decreases monotonously as the flow moves
from the bottom stagnation point(¢=180°) to
the top(g=0°). In the present problem, the cur-
ves of temperature gradient on the inner boun-
dary #=r; develop a plateau of peak values
with the increasing Rayleigh numbers, see the

(a) Streamlines and isotherms
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(b) Temperature gradient
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(a) Streamlines and isotherms
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(c) Radial temperature distribution
Fig. 9 Ra.=1.0X10° Pr=0.7, 7o/7:=2.6

(a) Streamlines and isotherms
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Fig. 10 Ra.=5.0x10%, Pr=0.7, 7¢/i=2.6

OO

.00



Natural Convection in a Horizontal Cylindrical Annulus Enclosing Heat Generating Core 673

(a) Streamlines and isotherms (a) Streamlines and isotherms
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(b) Temperature gradient (b) Temperature gradient
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(¢) Radial temperature distribution (c) Radial temperature distribution
Fig. 11 Ra.=1.0x10°% Pr=0.7, r/7i=2.6 Fig. 12 Rani=1.0x10° Pr=0.7, ro/r:=1.2
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(a) Streamlines and isotherms
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(b) Temperature gradient
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(c¢) Radial temperature distributon
Fig. 13 Rani=1.0%x10°, Pr=0.7, 7¢/7:=5.0
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Fig. 14 Radial temperature gradient for different
Prandt] numbers

second plots in Figs. 5~11, This phenomenon
can be interpreted as the result of interactive
convection from the heat-generating cylindrical
core region. The thin boundary layer developed
along inside surface of the partitioning wall in
the core region (#=FR), presents a large radial
gradient of temperature, for example, in the
region 30°<C#<C100° in Fig. 11(a). The chara-
cteristic plateau in Fig. 11(b) is caused by this

_interactive boundary layer.

The temperature inversion phenomenon, by
which the fluid near the cold surface is warmer
than the fluid near the hot surface in the ann-
ular region, is observed for Ra;>1.0x10°(Figs.
9~11). It is due to the influence of strong rec-
irculating current for high Rayleigh numbers.
For the low Rayleigh number flows, Figs. 5~
8, the radial temperature curves develop infle-
ction points suggesting growing effect of the
convection, which will eventually progress tow-
ard the temperature inversion at higher Rayleigh
number.

4.4. Effect of the Diameter Ratio

As the diameter ratio is taken smaller(#,/7:
=1.2) for a fixed Rayleigh number Rap;=1.0
x10% and Prandtl number Pr=0.7, Fig. 12,
where Rap; is based on the diameter of the in-
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ner cylinder, the effect of the conjugate conve-
ction from the cylindrical core is weakened wh-
ile the conduction effect becomes dominant in
the annular region. The straight temperature
curves, the coincident radial temperature gradie-
nts for the boundaries 7=#, and =7, and
the nearly concentric isotherms all support such
a claim. The heat flux occurs mainly in the
radial direction, suggesting pseudo-conduction he-
at transfer. As we take #,/7;=5.0 for the same
Rap: and Pr, Fig. 13, we observe that the rec-
irculating flow is increased in scale but slowed
in velocity and the inert region at the bottom
of the annular gap is increésed. It causes the
temperature to become flatter in this region. In
the cylindrical core, the viscous effect is diffu-

sed throughout in the relatively narrowed region.

Thus, boundary layer on the inside surface of
the boundary #=R is not as well developed as
the case of 7,/#;=2.6, the effect of which is
represented by the smoother temperature gradient
on the boundary 7=7; in the annular gap, Fig.
13(b).

4.5. Effect of the Prandt! Number

The effect of the Prandtl number is the least
among the parameters considered, In Fig. 14,
the temperature gradient is compared between
Pr=0,4 and Pr=20.0, for fixed Ra,=1.0x10°
and 7,/7;=2.6. The variation is very small.
This relative indifference was even stronger in
the comparison of the local temperature distrib-
utions, the streamlines and the isotherms, which
are not shown here.

5. Conclusion

The conjugate natural convection heat transfer
in a horizontal system of thermally active com-
posite layers has been analyzed by the finite
difference method. The development procedure

of the convection layers with the Rayleigh nu-
mber in the annulus and in the core region is
sequentially presented using the graphics of the
streamlines and isotherms, and the temperature
curves. It has been argued in a quantitative
manner that the thermal resistance in the ann-
ular gap decreases for higher Rayleigh number
due to the increased convection activity.

The interactive boundary layer developed al-
ong the wall in the core region makes the dist-
ribution of the radial temperature gradient along
the partitioning wall characteristically different
from that of the pure concentric annuli problems,
The interaction between the annulus and the
core region undergoes fundamental change for
different ratios of the outer and inner cylinder
diameters, depending upon the relative degree
of diffusion of the viscous effect in either of the
composite layers. Among the many parameters
investigated, the parameters of the partitioning
wall and the Prandtl number gave least influe-
nce in the parameter range studied.
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