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1. Introduction

An effective method of formulating and sol-
ving differential equations of motion for general
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mechanical systems subject to holonomic cons-
traints has recently been presented~®, Stand-
ard and user-supplied constraints are formulated
yielding algebraic relations involving generalized
coordinates of the bodies connected by each jo-
int. A Lagrange multiplier technique allows
coupling of the algebraic constraint equations
and differential equations, yielding a large sys-
tem of differential and algebraic equations wh-
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ich are solved iteratively using implicit numer-
ical integration methods.

In a preliminary formulation and code devel-
opment of three-dimensional rigid body mecha-
nics, Euler angles were used to define rotational
degrees of freedom. However, the use of Euler
angles often causes numerical difficulties when
one or more of the rigid bodies experiences large
rotations. In particular, when the second Euler
rotation angle is equal to 4-kz, (k=0,1,2,),
the axes of the first and third rotation angles
coincide, so these two angles can not be uniq-
uely determined. Therefore, some constraint
equations become dependent at that instant and
a unique solution does not exist. A methed to
circumvent this problem is to monitor the row
rank of the constraint Jacobian matrix. The
matrix loses rank when the second Euler rota-
tion angles approach kz. Before this occurs,
the computation can be interrupted and the bedy
fixed coordinate systems rotated to new positi-
ons. This technique can be performed automa-
tically by the algorithm. However, it is time
consuming and in general can not be done ea-
sily. Euler parameters, in contrast to Euler
angles or any other set c¢f three rctational gen-
eralized ccordinates have no such singular cas-
es™, thus they are attractive for formulating
system constraints and differential equations of
motion. Research result of successful application
of Euler parameters to the dynamic analysis of
three-dimensional constrained mechanical syste-
ms can be found in Ref. (5).

Inverse dynamic analysis technique of mech-
anical systems has been developed mainly for
robot manipulator design. Lagrangian or New-
ton-Euler formulations are usually employed to
calculate required joint forces or torques, to
drive mechanical systems as specified®~®. In
both methcds kinematic analysis of the systems
must be performed—facing the singularity probl-

ems of Euler angles or any other set of three
generalized coordinates. Therefore, application
of Euler parameters for inverse dynamic anal-
ysis of general mechanical systems is desirable.

In this research Euler parameters are emplo-
yed to define rotational degrees of freedom of
rigid bedies. Nonlinear holonomic constraint eq-
uations and differential equations of motion are
written in terms of the parameters. Lagrange
multiplier technique is used to couple the alge-
braic constraint equations and the differential
equations. Kinematic analysis of a mechanical
system is performed first, to calculate positions,
velocities, and accelerations of the rigid bedies
in the system. The data are then substituted to
the coupled equation of motion to calculate La-
grange multipliers that are interpreted as requ-
ired generalized joint forces to drive the system
as specified. One exmaple is treated, to illustrate
the method and to evaluate the effectiveness of
numerical implementation. The example is a
six d.o.f(degree of freedom) robot mechanism
with a specifed motion. In the preccedure the
geneiralized coordinate partitioning technique®
is employed for efficient numerical calculations.

2. Equations of Constraint

In order to specify angular orientation of a
rigid bedy in an inertial(glokal) xyz coordinate
system, it is sufficient to specify the angular
orientation of a ccordinate system &7{ that is
rigidly attached to the bedy. Let the &n:i{: co-
ordinate system be attached to body i as shown
in Fig. 1, where the origin O; is lccated at the
center of mass. A point P; on bcdy ¢ is located
in the inertial xyz cocrdinate systcm by

rit=r;-+A4:8:'* (D
where S:/?=[&#,5?, {*]:7 locates p: in the &m:ls
coordinate system, r:=[x,y, 2]:T locates O; in
the xyz coordinate system, and A; is the rota-
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tional transformation matrix of body i. Supers-
cript T denotes vector or matrix transpose. Ma-
trix A: expressed in terms of Euler parameters
€, €1, 6, and e is

Ai:2
et +eli—1/2 ee,—ewe, €183+ 848; 7
€10 +08s  6F 8 —1/2 ees—enes @
€183— €48, 8,05+ 206, el+e2—1/2 )

where subscript ¢ indicates transformation mat-
rix for body i. The four Euler parameters
are required to satisfy the equation
et +eTe=gy2+¢ 2+ 2+ 60 = 3
Standard holonomic constraints between rigid
bodies are taken as friction free(workless) joints
Formulations for spherical, revolute, translatio-
nal, universal, and cylindrical holonomic cons-
traints, using the same notation and coordinate

presentation, can be found in reference®®. As

X

Fig. 1 Body fixed &m:{: and global xyz coordinate
system

Fig. 2 Spherical joint between two rigid bodies

an example, the spherical joint formulation is
described here. Fig. 2 shows two adjacent bod-
ies, numbered 7 and j, connected by a spherical
joint (ball joint). A vector loop equation can
be written as

ri+8;—8;—r;=0 (4)
The scalar equations for this joint, determined
by the use of Eq. (1), are

ri+AS/*—r,—A;8/¢=0 )]

3. Equations of Motion

Denote the vector of generalized coordinates
of body 7 by qi, q:=[x,y, 2, €, €,, €5, €;].7, and
the composite vector of all system generalized
coordinate by g={gq,%, g.T, +-+- ,g-71%, where n
is the number of rigid bodies. Holonomic const-
raint equations of the kind introduced in Section
2 (including Eq. (3)) are

o(q, ) =0 ®
where O(q, )=[¢:(q,t), ¢:(q,t), -, ¢u(g,
£)]7 are assumed to be independent; Z.e., the
Jacobian matrix for Eq. (6), defined as

j:l,...,']n (7>

has full row rank. It is presumed that @(g,¢)
are twice continucusly differentiable (in fact,
they are normally analytic).
Ditferentiation of Eq. (6) gives the velocity
relation
0.q+9.=0 €))
where ¢ is the vector of generalized velocities.
Before preceding to the equations of motion,
Eq. (8) may be differentiated with respect to
time to obtain
0.0+ (P.0)q+29:.,9+0.=0 (9
Then,
may be written in the form
JG=0,9=—(2,9)q—2P:;q— P (10)
Note that the coefficient of ¢ in Eq. (10) is just

the generalized acceleration equations
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the system Jacobian J, and the right side is a
function of only g and 4.

Virtual displacement Jq that are consistent
with constraints must satisfy differential form
of Eq. (8), with time suppressed; i.e.,

Jog=0,0g=0 Qan

In order to determine the equations of motion,
let w; =[w;, w, we];" be the projection of the
angular velocity vector for body ¢ on the local
coordinates axes, ri=[x,y, 2]:¥ the global laca-
tion of the center of mass, m; the mass, and
L, L, Iy, Ly, L', and I the moments and
products of inertia about the &:{:; axes respec-
tively. The kinetic energy of the 7th body can
thus be written as

Tiz%fiTMi'i"["—é_wi'TIiwi/ 12
where
m00 Lee I Iz
N;={0 m 0} I;=[L,e I In!} a3
00 m)/; Lee Jen Iee/s

Angular velocity w;” can be expressed in terms
of Euler paramters as™®

w =2B:p; (14
where pi=[e,, €1, €, €517, Di=[éo, &1, &, €17

and
—e € e —€
Bi={_ez —e3 € elJ s
—€; € —& €o/s
Using the Lagrange multiplier formulation of
Lagrange’s equations of motion, with kinemat-
ically admissible virtual displacements of Eqg.
(11), one can prove existence of multiplier 4
(H&R=~, with which the equations of motion
for the ith body are written as‘®.

d
—d-t—?(T—':\T-}-d),-iTl—f;

=0, (3 equations) (16)
'g—t (T3)T =T+ 9,:TA—h;
=0, (4 equations) an

where f; and h: are the vectors of generalized

forces and torques corresponding to generalized
coordinates r; and p;:, respectively. Substitution
of Eg. (12) into Eq. (16) and (17) yields
Nii i+ 9,5A=1; (18)
AB{L,B:p:+®,"A=h:+8B,"1,.B:p: (19)
Defining g:=[f?, (h+8BTIBp)T]: and

m o 0
M= 0’”0} 0 (20)

0 0m
0 [4B7IB]; }(7 X7 matrix)

Eqs. (18) and (19) can be written as

M,-ﬁi=y.~—¢q,~T2 (21)
where q:=[r7, pT1."=[x, ¥, 2, €, €1, €2, €3l:".
The total system of equations of motion for »
rigid bodies is then

Mi=g—9,"2 22)
where M=diag. [M,, Mz, -+, M.}, g=[g.", 9.",
o, g,T]7. When an external force f; acts at a
point p on body #, the force components for
body 7 can be calculated from

[if l: [S’l’fATf]j (23

where k" is the vector of components of torque
about &;, »:, {: axes, $’# is the vector of coordi-
nates of p in the &7:{; coordinate system. Tra-
nsformation of the components of the torque A,
=[he, by, e 1™ to Bi=[Aeo, by, Bes, Bey T can be
obtained by multiplying both sides of Eq. (14)
h/'T to get

hTw, =2hi'TBibi (24)
The instantaneous power, A;/Tw; is independent
of coordinate system representation, thus A/ 7w;’
=h"p; and Eq. (24) becomes

h.=2B."h/ (25
Therefore, the generalized force components for
body 7 by the external force f: are written as

[ Ifz. l= [23?},‘/] (26)

_* «'*y the skew symmetric matrix of 8’¢
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4. Inverse Dynamic Analysis

Inverse dynamic analysis may be defined as
force analysis of kinematically driven systems.
In a kinematically driven system, all of the d.
o.f. are spscified, i.e., J is non-singular. Ther-
efore, positions, velocities, and accelerations can
be computed uniquely. Since the kinematic data
are available, the equations of motion of Eq.
(22) may be solved to determine Lagrange mu-
Itiplier vector A, to obtain required generalized
actuator forces or torques.

For inverse dynamic analysis purpose, one
can partition Eq. (6) as

¢=[@K] @n
@A
where @F and @4 denote vectors of the kinem-
atic constraint equation and the actuator const-
raint equation, respectively. Likewise, Eq. (22)
can be rearranged and partitioned as

AK -
[, @xr][ ]=g—Mq (28)
lA

where A¥ and A4 are vectors of Lagrange mul-

tipliers associated with @% and @4, respectively.

Once the Lagrange multiplier vectors A¥ and 24
are calculated from Eq. (28) one can obtain the
generalized actuator forces by

g=—0 24 (29)

l
wheie g:zlgi’ ZA:[ZI, /225 **%y Zl]T’ ¢A:[@1A: Y

@4, -, 0417, gi=—0;*"A;, and [ is the num-
ber of actuators in the system. Consider the kth
actuator connecting rigid bodies 7 and j. Let g
and g;:. be the generalized forces that must be
applied to the bodies 7 and j, respectively, by
the actuator. Transforming the generalized for-
ces into the forces in the global coordinate sys-
tem and the torques in the local coordinate sy-
stem, one obtains

f,’ gik(r)
= 1 (30)
hil —Z*Biyik(i’)

where gu=[g4", 941", fi=[fx /5 /17 and
h: is the vector of torque components about
gmil: axes. In Eq. (30), superscriptsr and p
denote that the variables are related to coordin-
ates r and p respectively. Using the actuator
force vectors f; and A/ in Eq. (30),
calculate the actnator control forces correspond-
ing to actuator types, i.e., torsional and transl-

one can

ational actuators.

4.1. Torsional Actuator

Torsional atuator elements may be defined
between adjacent bodies 7 and j that are conn-
ected by a revolute joint, as shown in Fig. 3.
Two vectors S; and S,, embedded in bodies i
and j respectively, define a plane perpendicular
to the revolute joint axes. In addition, the two
vectors define the torsional spring, damper atta-
chment points on the two bodies. The angle be-
tween S; and S; is denoted by € and is initially
assumed to be 0£L0Lz. The angle ¢ can be
calculated from the equation

878,

[S:el+]8;]

To determine all possible values of 8, a point

f=cos™? 0LOLx GD

k is initially defined on the revolute joint axis
such that the direction of vector § is determined
by the right hand screw law, rotating from S;
to §; and sweeping angle f(initially 0£L0Lx).
During the inverse dynamic analysis, the cross
product of S: and S; vields a vector parallel to
8, having the same direction if 0£L0ZLx, and
opposite direction if #£0L2x, ie.,

sré,-sj{éo $ 0<b<n (32)

L0 mL0L2n

The constraint equation for a torsional actuator
is given as

6=8:"8;/18:] |18} —cosb(#)=0 33
Therefore, the driving torque for the kth torsi-
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onal actuator connecting the two bodies 7 and j
is expressed as

o= Th +k(6—0,)+Ch (34
where u; is the components of vector ; in &;7;¢;

coordinate system, h;
derived in Eq. (31) & and C. are torsional sp-

is the torque components

ring constant and torsional damping coefficient,
respectively.

4.2. Translational Actuator

A translational actuator between bodies 7 and
7 is shown in Fig. 4. The constraint equation
corresponding to the physical meaning of the

translational actuator is given as
o=1T1—-1*() =0
where I=r;*—r;* and [($)=T])!?
REVOLUTE

JOINT
AXIS lT

(35)

Fig. 4 Translational spring-damper-actuator element
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Therefore, the driving force for the Ath transl-
ational actuator connecting the two bodies 7 and
J is expressed as

f—{ (FEFOVE-Cl+ k(I —1y), £;710 (36)

—(FTF)VELCI+H R 1), £T1£0

where [, C and & are the undeformed length
of the spring, damping coefficient, and spring
constant.

5. Inverse Dynamic Analysis Algorithm

Inverse dynamic analysis algorithm for gene-
ral three-dimensional mechanical systems using
Euler parameters can now be stated in the fol-
lowing steps.

Step 1. Construct the mathematical model of
the practical system, using the joints, rigid
bodies, and actuators.

Step 2. Write the user supplied subroutines for
the driving constraints corresponding to the
desired driving plane.

Step 3. Set t=t, and solve Egs. (6), (8) and
(9) for the position, velocity, and acceleration
analysis, respectively.

Step 4, Substitute the kinematic data obtained
at Step 3 to Eq. (28), to calculate Lagrange
multiplier vector A=[4*", 247]T.

Step 5. Calculate the generalized force vector g
using Eq. (29) and transform the generalized
forces into the forces in the global coordinate
system and the torques in the local coordinate
system using Eq. (30).

Step 6. Calculate the actuator forces or torques
corresponding to the actuator types.

Step 7. If ¢ exceeds the final simulation time,
terminate. Otherwise return to step 3 with ¢
—=f+ At where 4t is the predetermined step

size.
6. Numerical Example

A six d.o.f. industrial robot, of which confi-
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guration is illustrated in Fig. 5, is taken as
an example. The length, mass, and moment of
inertia data of links of the robot are summari-
zed in Table 1. The hand of the robot is reg-
uired to start moving from the initial psint and
stop at the final point. Positions of the points
and hand orientations at the points are given in
Table 2. It is assumed that the hand moves on
a straight line that connects the two points as
a uniform velocity of 1.27m/sec except the ac-

celeration and deceleration periods 0.25 second

A ; 1-th actuaror

! \~ By 7

1=+h body

Fig. 5 Kinematic representation of an industrial

robot
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Fig. 6 Torque of actuator 2
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Fig. 7 Torque of actuator 3

Table 1 Inertia propreties of links

(kg, m?, kg, m)
blgé%i; I.. I, ' i Mass rLength
] - — 62.000 680.0f 1.50
2 11.00{ 53.00 44.00 260.0 1.02
3 .10, 44.00 44.00 180.0  1.02
4 0.44 0.82 0.91 550  0.20
5 0.477 0.18 0.38 3.0 0.15
6 0.64 0.44 0.73 680 0.18

Table 2 Two end points and hand orientations
(m, Deg.)

Hand Orientation

] Position ’ (Euler Angles)
x|y }PSI T%‘z PHI

Initial ‘ 2.03 0.0 1.021 90.0 90.0| 0.0
Final | 1.52 2.54| 180.0/ 90.0| 90.0

each, near the points. It is also assumed that
orientation change of the hand is proportional
to its position change.

The required torques of the six torsional act-
uators, to drive the robot as specified, are cale-
ulated using the technique explained above. Am-
ong them, torque curves of two actuators, actu-
ators 2 and 3 in Fig. 5, are shown in Fig. 6
and 7. Motion of the robot is reanalyzed rega-
rding the calculated torques as external torques
acting on the system, to check accuracy of the
inverse dynamic analysis results. The DADS-3
D Code®™ is used for the reanalysis and the
maximum position error of the hand at the final
point is 0. 15mm. Considering that the hand mo-
ves about 2,96 meters and spline functions are
used to approximate the torques for reanalysis,
one can conclude that the error is negligible and
that validity of the technique presented in this
paper is fully demonstrated.
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