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Decentralized Stabilization of a Class of Uncertain

Large Scale Continuous-Time Systems
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Abstract

This paper considers the problem of stabilizing a class of continuous-time large scale linear
systems when the system parameters are uncertain. The proposed local adaptive controls are a
combination of a new adaptive feedback control and the conventional linear feedback control.
A condition of stability is derived, under which the overall closed-loop system is assured to be

globally stable. Also, a numerical example is illustrated via computer simulation.

Nomenclature

[r] Absolute value of a real number r

AT Transpose of a matrix A

A"l . Inverse of a square matrix A

[lall : Euclidean norm of a finite dimensional

vector a

I, : n-dimensional identity matrix

R : n-dimensional vector space
)\m(A): Minimum eigenvalue of a square matrix A
)\M(A): Maximum eigenvalue of a square matrix A

lAll,: Spectral norm of a matrix A defined as
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llAllg :

(274)

lAll=v/Ay (ATA)

Euclidean norm of a matrix A defined
as

IAllg=/F Ea?

1

where a;; is the (i, j)-th element of A

diag (ry, .., Iy): N-dimensional diagonal
matrix which has real numbers T, i=1,
..., N on the diagonal and zeros else-
where

block diag (A , ..., Ay): Block diagonal matrix
which has matrices Ai’ i=1, ..., N on the
diagonal and zeros elsewhere
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I. Introduction

In the study of large scale systems, the pro-
blem of stability has received a great deal of
attention. A lot of work on this problem has
been carried out under the basic assumption
that the dynamics of each subsystem as well as
their interconnections are fairly well known[!]
frequently, the possibility of stabilizing such
an interconnected system by using local feed-
back has been investigated. However, in pract-
ice, there are many situations that such
an exact model-based stabilizing control is not
feasible either due to difficulties in estimating
some or all of the system parameters or due to
inaccurate modelling of the complex dynamic
system. Power system, [2] process control
system,[3] and robotic manipulation system [¢]
are but a few examples for which any exact
model-based control scheme would often fail
to exist.

As an approach to treat the system parame-
ter uncertainties in large systems, Hmamed and
Radouane [5! recently considered the stabili-
zation problem of a class of interconnected
continuous systems and proposed a new type
of local adaptive controllers. Also, an alterna-
tive simple approach based on Lyapunov’s
Direct Method was developed for the same
problem in. [6]  However, these results were
restricted to the class in which each subsystemn

in

has a single-input and moreover is assumed to
be given in a controllable form.

In this paper, we extend the results of [6]
to a wider class of systems in which each sub-
system may have multi-input and have some
relaxed assumptions on the system structure,
A decentralized adaptive scheme is devised
by combining an adaptive feedback control
based on Lyapunov design 8] for compen-
sating some effects by unknown system
parameters and the exact model-based linear
feedback control for overriding the unfavorable
effects by interconnections.

II. Problem Statement

Consider the large-scale interconnected

linear system described by

(275)
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N
x.=A.x.+B.u. + 2 A.x,i=12, ..,
i 171 1 s 1
i=1,j¥1

where x. e R™ is the state of the i-th sub-
system, u; € R™ s its control input, and A,
Bi and Aij are constant matrices of appropriate
dimensions. It is assumed that :

(A-1). Each of the decoupled subsystems is
completely controllable and of
known dimensions (ni, mi).

The state X; is available for measure-
ments only at the i-th subsystem.

The elements of Ai and Bi are un-
known, while an upper bound on
elements of Aij is known such that

(A-2).

(A-3).

lapq l< i, p= 1, ey ni
i U qgq=1, s T

(2)

where aﬁq is the (p, q) - th element of Aij’

and i is a known constant.

For convenience, an additional assumption will
be made later.

Now, the problem is to determine a local
control for each subsystem (decentralized
control) which  stabilizes the overall inter-
connected system (1). For this, we first present
a method to design a local adaptive feedback
control, and then show that the resultant
closed-loop system is assured to be globally
stable.

Remark 1.

The assumption (A-3) is not unrealistic in
the sense that in many situations, a designer
usually has information on the bounds on the
interconnection elements which correspond
to gains determining the magnitude of infor-
mation flow among the various subunits,
while the dynamics of these processes them-
selves may not be certain.

HI. Design of Local Adaptive Controllers
The system (1) can be rewritten as

° [« (o] [o] [e]

X = Ai x;+ Bi ui+(Ai—Ai) x;+ (Bi_Bi) u;

N
+ 2 Aij
i#1

N (3)

X, i=1,2, ...
i 2y s

N

(1)
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where (A?, B?) is a predetermined controllable
pair.

In order to stabilize the system (3), we
propose the following local adaptive control-
lers:

= (Imi + G (K + Fi(t) x;,
i=1,2,..,N 4)
where
— R°T
K;=B{" P;. (5)

The symmetric positive definite matrix Pi
is the solution of the following algebraic
riccati equation:

o T o 0,07 _

(Ai+ ailni) Pi-!~Pi(Ai+ocilni)APiBiBi P+Q;=0
(6)

for a symmetric positive definite Qi and non-

negative constant @ . The closed-loop system
is then

- o [e] o] o3
= (Ai_BiKi) xi+ (Ai_Ai _BiFi(t) ) X;

N
+(B B BG(t))u+ z Aix i
iti )
i=1,2,...,,N. (7

It is noted that (Aci> — Bci) Ki) is stable matrix
with degree of stability ;.

It is further assumed here that
. . * *
(A-4). there exist the matrices F," and G,
satisfying the following relations:

A, — A°=R°F,"
1 1 1 1

, (®)
O_ o
B, - B/= B, Gi
These conditions actually imply that the

column vectors of the matrices (A1 A) and
(B BO) should be linearly dependent on the
column vectors of the matrix B 171, The
typical cases where these cond1t1ons are satis-
fied are that:

(276)
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(i) The number of state variables is not
greater than that of input.
(ii) The state equation is written in parti-
tioned phase variable canonical form
(8] ,
It is remarked that the matching conditions (8)
are necessary for deriving the generating
schemes of Fi(t) and Gi(t).
The following parameter adaptation laws
are proposed based on the lyapunov design
[7.8]:

o _ Tl
Fi i l-‘i
. T (9
Gi = Kixiui Fi
where Fil and Fiz, which are called adap-

are chosen to be sym-
It is noted that the
is

tation gain matrices,
metric positive definite.
present parameter adaptation mechanism
simpler than that of. (7]

IV. A Condition of Stability
Substituting (8) into (7), we obtain
° [o] (o] [e] *
X; = (Ai_Bi Ki) x;t Bi (Fi ~F(t) ) X;

N
+B°i(G ~Gy()) u + E AuxJ =12, ..

= (A7-B{K)x;+ B"ioi(t)wi+ 2 A.X.

ik u]
i=1,2,..,N (10)
where
* *
0= [ F; —F®), G -G
(11
wiT: [xiT: uT

Also, using the definitions (11), the parameter
adaptation laws (9) are simplified as

N - T _

Bi—Kixi\Ifi Fi’ i=1,2,...,N (12)
where

Iy = block diag } I'}', T'7 |
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The stability of the overall adaptive system
given by eqns. (10) and (12) is then established
through the following main resuit. For use in
the following Theorem 1, let us first introduce
the relations as:

i 9]

km(si) ”xi”2 <Xi’r Sixig)\M(Si) “xi”2 (13)

for a positive definite matrix S;

iy [sl;

“AIIHS <”A]J”E <\/ ninj uij (14)
where “ij is given in (2).
Also, let us define the terms
M —
”AU”E = ninj #ij (15)
- O OT
D;= PiBiBi P+ Qi (16)

Theorem 1 (A sufficient condition of stability)

Under the assumptions (A-1) ~ (A-4) in
section II and (A-4) in section III, the equi-
librium state of the closed-loop system given by
(10) and (12) is stable, and foreachi=1,2, ...,
N, xi(t) -0, tot—>oe  if o (for each i} can
be chosen such that the matrix L = [Qijl,of
dimension N,

Qij —)\m (Di +2 aiPi) /)\M(Pi)’ i=j a7
2| Aljllhg , i#

is negative definite, where D, and ”AUHI::I are
defined in (15) and (16), respectively.

(Proof] Let us choose a lyapunov function

candidate as follows:

N
Vix, 0)= i§1 A (xi, Gi)

N
= ElfxiTPi x+tr (0,171 6,7)} (18)

where

(277)
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xT=x, T, . xy 15 0T=10T,.,07 1.

Then, the time derivative of V (x,0) and eqn.
(10) lead to

N
V(x,0)= El [ %] §(A%-BJK)TP+P, (A7-BJK)}

N
T
X +2 % P ]E)iAﬁ xj]. (19)

It is noted here that the parameter adaptation
law (12) is derived during the calculation of
V (x, 8), and V (x, 6) is not a function of 8

any more. Using the relation (6) and the de-
finition (16), eqn. (19) is simplified as
. N
V(x,0)= 51 [ —x] (D+2aP) x;
N
T
+2x P Ei Ajj X; 1 20)

Applying the relations (13) and (14) to the first
term and the second term of the right hand side
of (20), respectively, we obtain

. N
V) < 2 |-

2
z A (Dt 2P [Ix;]]

N
+2 IR il % gl gl

N

§1 {— A, (Dj+20,P) Hxi||2

i N N

+2 20 ,(P) lIx; I j?i “Aij”E ”xj”%

N

N N
z Z
)

a )\M(Pi) Ql.] IIXIH ”xj"

]

where

Clball, il ey lixygl17.

It is noted that since Pi is positive definite,
1 P, I , isequal to )\M (P).

Now, increasing o, if we can choose o

x T diag [N\, (Py), ..., Ay (P)T L X (21)
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so as to guarantee the negative definiteness of
L, then

V(x) <0 (22)

This means that the equilibrium state is stable
in the lyapunov sense, i.e., xi(t), Fi(t) and
Gi (t) for i=1, ..., N are bounded if xi(O), Fi(0)
and Gi(O) for i=1, ..., N are bounded. further-
more, from (21) and (22), we obtain(9]

Vi) <- ¢ |[x]? (23)

for some positive constant c. Since the right
hand side of (23) is monotonic decreasing
function, it follows that {’(x) < 0, unless
lIX|l=0. Hence

lIx.ll >0, ie., x. > 0,ast—>o0
i i

forall i=1,2,...,N.
Q.ED

Remark 2
From the parameter adaptation laws (9)

and the fact that x; > 0, as t > o9 it follows
that

F. and éi

i >0, ast > 09

But, this does not necessarily imply that

F(t) > F," and G(t) > G, as t >o0

V. An Example

Consider the unstable linear constant inter-
connected system with unknown system para-
meters described by

s [ -05 1.5 ] [0.8 ] [0.2 0.4}
X = X + u; +
1 0 0 0 0

1
X2, X1(0)=|: 1 ]

(278)

. { -0.5 1] {1
X2 = X2+
0 1 0

-1
Xl,xz(0)=[ ]
1

0.8] {0.4 0.1
2 0 02

Here, upper bounds for the elements of inter~
connections are assumed to be known as

Hiz =ty =0.4.

As a preliminary step, we first specify the exact
model for each subsystem and choose the
design parameters Qi and o such that

1
ﬁ=[0] . B=l
Q = I, Q =31
a = 0, &y = 2

Then, the solution Pi of (6) are given by

1.7 1 3 0
SV PN
1 1.7 0 3

Hence

)\M(Pl) =27, Ay(P2)=3
km(Dl + 2011 Pl )=1, )\m(D2+ 2&2 P2) =24,

Also, the off-diagonal terms of the L matrix in
(17) are given by

£12 = 8n =1

Based on the above data, it can be easily shown
that the condition of stability in Theorem 1 is
satisfied.

Now, using the proposed adaptive scheme,
computer simulations are carried out to stabi-

|
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Fig. 1. Trajectory of y, (st),
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-04F
-0.6}
-08
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Time (sec)
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Fig. 2. Trajectory of y, y,(st).
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lize the example system. The results with initial
estimates

Fi(o)=0, Gi(°)=0’ fori=1,2
and with adaptation gains
=1, T=1,T}=1, I'’=021,

are presen.ted in Figs. 1-2. It is noted that the
notation s{ in the figures denotes the j-th com-
ponent of the vector §;-

As can be seen in the figures, the simulation
results coincide with the expected ones given in
section IV,

VI. Concluding Remarks

It has been shown that a class of uncertain
continuous-time large scale interconnected
linear systems could be stabilized using a de-
centralized adaptive scheme which combined
an adaptive nonlinear feedback control and the
exact model-based linear feedback control.

A further study of immediate interest is to
develop some stabilization method which do
not require the assumption of the existence
of the matching conditions,
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