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Optimization of Weighting Matrix Selection
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Abstract

A method optimizing selection of a state weighting matrix is presented. The state weight-
ing matrix is chosen so that the closed-loop system responses closely match to the ideal
model responses. An algorithm is presented which determines a positive semidefinite state
weighting matrix in the linear quadratic optimal control design problem and an numerical
example is given to show the effect of the present algorithm.

I. Introduction

In the linear quadratic regulator problem, so
little is known about the relationships between
the weighting matrices and various design speci-
fications. Therefore the designer must resort to
trial and error iterations. To deal with these
limitations, various intuitive ways to select
quadratic weighting matrices have been devised
such as procedure for asymptotically placing
desired closed-loop eigenvalues and eigenvectors
[1-2] and various versions of model following
[3-4}. As another indirect method, a time-
weighted quadratic performance index can be
used to give a response having a small overshoot
and adequately damped without complicating
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weighting matrix selection [5-6].

In this paper, a new weighting matrix selec-
tion algorithm is presented. To translate design
specifications, a state weighting matrix is
optimized so that the closed-loop system re-
sponses resulting from the Riccati equation
closely match to the model responses. An
algorithm 1is presented which determines a
positive semidefinite state weighting matrix in
the linear quadratic optimal control design
problem and an numerical example is given to
show the effect of the present algorithm.

I. Problem statement and solution

Let the linear time - invariant system be
defined by
x(t) = Ax(t) + Bu(t) , x(0) = Xq (1-a)

y(t) = Cx(t) (1-b)
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where x is an n-dimensional state vector, u is an
m-dimensional control vector, and y is a r-
dimensional vector of responses. The constant
matrices A, B and C are of appropriate dimen-
sions. In the following, the prime will denote
the transpose and tr[M] the trace of the matrix
M.

Let the optimal feedbak gain K minimizes
the following quadratic performance index

1

Jl =7

Sy (xQx+uwRu)dt t )

where the matrices Q and R are symmetric
positive semidefinite and positive definite
matrices such that Q=D'D, D is an nxn matrix.
The matrix pairs (A, B) and (A, D) are assumed
to be completely controllable and observable,
respectively. Controllability of the matrix pair
(A, B) ensures boundness of the cost J; in (2)
and observability of (A, D) ensures that the
closedloop system resulting from the Riccati
matrix equation is asymtotically stable. With-
out loss of generality, we assume that the
weighting matrix of the control signal R is
identity matrix [7]. Then the feedback gain K
satisfies the following relation:
K=-B'P 3)
where the matrix P is the solution of the
Riccati matrix equation.
PA+A’P+D'D-PBBP=0 0))
The dynamics of some ideal systems, which
is called the model, may be described by the
equation
X (0= A x, (1) )
where x__ is a r-dimensional model state vector.
The problem is to choose the positive semi-
definite state weighting matrix Q so that the
closed loop system responses closely match to
the model responses. This can be achieved by
minimizing the peformance index
oy =f, G-A VW (6)
(y-A,y)dt

This performance index penalizes the difference
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between the derivatives of actual system re-
sponse y and those derivatives that would arise
if the system were identical to the model. The
performance index (6) which includes an
implicit model-following term may be replaced
by

T=J7 (v-xp) Wy -xp)dt (N
which involves the concept of the virtual
model-following [8]. A disadvantage of the
approach baced on the performance index (7) is
that it leads to an increse in the dimension of
the problem. Eqn. (1-a) and eqn. (3) together
with u = Kx yield

x=(A-BB'P)x =Fx ; (8)
where

F=(A-BB'P) *
The cost J can be expressed as [9]

J=1tr (P Xo) 9
where P; is the solution of the following

Lyapunov matrix equation

F'P, +P,F+(CF-A_O)'W (10
- (CF - AmC) =0
and X0= xoxo’, To determine the matrix D

which minimizes the cost J subject to the
constraints in eqn. (4) and (10), we use the
Lagrangian multiplier approach [10], Then the
Hamiltonian for this problem is expressed as

H(D,P,.L,P; ,Ly) = tr (P; Xo)

+tr{Li[F'P, +P,F+(CF-A_O'W
(CF -A, O}

+1tr [L'(A'P+PA+ D'D-PBB'P)] (11)
where L; and L are the symmetric Lagrange
multiplier matrices. The necessary conditions
for the solution are derived by taking the par-
tial derivatives of (11) with respect to D, P, P,
L; and L, and equating them to zero. The
necessary conditions to be satisfied by the
matrix D which minimizes the performance
index (6) are given by
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OH _

oD

2DL = 0..

(12)

Here the matrix L satisfies the following
lyapunov equations:

FL+LF'+Y+Y' =0 (13)

FL; +LiF'+X =0 (14)

where Y =-BB' [P, + C'W(CF - A O)IL, .

II. A Computational Algorithm

To obtain the optimal solution, one can use
the following iterative algorithm
(1) Select any initial matrix D.

(2) Determine 2

3D from eqn. (12).

oH
(3) If 2D

tion is completed. Otherwise find a new
value of the matrix D using any gradient
based method [11].

(4) Return to the step (2).

satisfies convergence criteria, itera-

IV. Example

Consider a third-order system to control
position of permanent magnet DC motors as
follows:

0 1 0
A= !: 0 -0.02 0.83:| >
0 -3481 -439
0 1 0 0
il el
9259 0 1 0

The weighting matrices and initial conditione
also are chosen as W=I, x(0)=[-1 0 0}’ and
xm(0)=[-1 0}'.

Case 1
When the ideal model dynamics is chosen as
follows

(290)
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0 1

m 2
-25 -7.07

A

eqn. (12) gives rise to

225 0  -0.03

Q= 0 0.0l 0 ,
-0.03 0 0243

K = [15 3.875 0.449], J=0.

Therefore the responses of the closed-loop
system are equal to those of the model.

Case 2
When the model dynamics is chosen as

[ ) | }
-25 -7.07

similarity we can obtain

Am

100 0 0.018
Q = 0 0.01 0 ,
0018 0 0.107
K = [10 2.458 0.283], J= 0.316.

(i) model response

(11) system response

t(sec)

(1) model response

(1i) system response

t({sec)

(b)

Fig. 1. Responses of model and system,
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Then, the transient responses are plotted in
Fig. 1.

V. Conclusions

A new weighting matrix selection algorithm
has been presented. To translate design specifi-
cations, a state weighting matrix is optimized so
that the closed-loop system responses resulting
from the Riccati matrix equation closely match
to the model responses. An algorithm has been
presented which determines a positive semi-
definite state weighting matrix in the linear
quadratic optimal control design problem and
an numerical example has been given to show
the effect of the present algorithm.
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