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Abstract

By introducing the concept of reliability of parallel systems the set covering models are
modified to accomodate a covering probability and the effects of overlapped covering, A
branch-and-bound algorithm is developed and illustrated by a numerical example, The

procedure has been coded and its computational efficiency is studied.

1. Introduction

Numerous situations have been modeled as set covering problems. In a discrete facility
location context, the problem of determining the number of locations of facilities to cover
the set of customers can be formulated as a set covering model with two variations [1]. The
total covering problem involves the determination of the minimum number of locations of
facilities such that all customers are covered. The partial covering model involves the deter-
mination of the locations of a limited number of available facilities such that the maximum
number of customers are covered.

Previously, in both models, an individual customer interacts with only one facility. Thus,
being covered by multiple facilities is considered identical to being covered by only one.
However, it may be the case that increasing benefits are accrued by multiple coverage. In
the total covering model each customer is classified into only one of two categories; covered
or not covered by a facility. In the generalized partial covering model the coverage may be
interpreted as the proportion of covering. Alternatively, situations exist in which this is not
the case, a customer’s coverage by a facility being probabilistic.

In this paper, the total covering model and partial covering model are modified to
incorporate these variations of probabilistic and multiple coverage by introducing the concept
of reliability of parallel systems. Section 2 formulates the mathematical models for these
variations. The model corresponding to the total covering model can be solved by an integer
programming algorithm, whereas the model corresponding to the partial covering model
requires a branch-and-bound algorithm which is presented and illustrated by a numerical
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example in section 3. Finally, section 4 provides some computational results oi the algorithm

and discusses its efficiency.
2. Mathematical Formulation of the Problem

The following problem is the typical one which can be solved by the model to be developed,
Assume that radars (facilities) are to be installed at a number of possible sites to detect air
attacks emanating from any of several points (customers). Radars can be classified into
several kinds according to their capacities, efficiencies, prices, etc. The coverage of a point
by a radar may be probabilistic. Multiple radars may cover one point simultaneously. Finally,
at one site more than one radar may be installed.

The following notations are used :
Constants
m . number of customers
» . number of kinds of facilities
2 : number of sites
w=rXn
s @ maximum number of facilities to be located
y : maximum hudget available

1, if customer 7 is covered by a facility located at site &,
@it 0, otherwige,
or measure of covering of customer ¢ by a facility located at site &
pir probability that customer i is covered by a facility located at site &
pfu =max (Diu, Pisusy, =0 y Pw)
piie : probability that customer ¢ is covered by a jth-kind facility located at site k
pi : minimum probability with which customer ¢-should be covered
¢: :cost of assigning a facility to site &
cix : cost of assigning a jth-kind facility to site &
t; @ maximum number of jth-kind facilities when whole budget is devoted
t :maximum number of wth-kind facilities when remaining budget with current solution
is devoted
Xu  w-component vector (¥, Xz 0,0y Xu, 0y coeoer , 0) where x« is the last nonzero component
e, : w-component unit vector whose components are all 0 except for a single 1 in vth
position
2z upper bound
z: : minimum upper bound
zr :lower bound
Decision variables
X, 1, if a facility is located at site &
0, otherwise

Xir : number of jth-kind facilities located at site &

The total covering problem determining the minimum number of facilities required to cover
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a set of customers is formulated as

”

T1. minimize z = 3 X,
k=1

subject to

>0 air Xa = 1, i= 1, 2» ey M,
k=1 (1)
Xe=0or1, k=1,2, =, n.

Since a:x in this model has value of 1 or 0 depending on whether customer 7 is covered or
not by any facility located at site &, this model does not consider the situations where the
coverages are probabilistic and the facilities are not same in their capacities, efficiencies,
prices, etc. Also the value 1 or 0 of X depending on whether a facility is located at site &
or not, means that the model does not allow multiple facilities to be installed at one site.
These limitations can be solved by introducing the probability, 0 < pise << 1, which the customer
7 is covered by jth-kind facility located at site £ and decision variable X;x which is the number
of jth-kind facilities at site k.

The constraints (1) imply that each of the m customers requires to be covered by at least
one facility and that there is no difference between being covered by only one facility and
being covered by multiple facilities. In case where these implications are not appropriate, the
revised model introduces a measure of coverage. Using the concept of reliability of parallel

systems [4, the probability that customer 7 is covered will be

1 — T I (—pi)X

i= k=1

—

which must be greater than or equal to pi. Then model T1 can be modified as

T2. minimize z2=3% X Xu
i=1 k=1
subject to
1_-”1 1{[1(1_‘1)‘“)X” = by, i=1,2, =, m, @)
ie1 k-
Xisx ! integer, 1 =1,2, -, m,
Fi=1,2, -, 7

k=1,2, =, n,

The partial covering problem in which s available facilities are assigned to sites in such
a way that the maximum number of customers are covered is formulated as

m

Pl. maximize z = ¥ max an X; €))
i=1 ]'
subject to
Z Xj g Sy
s
Xj=OOI'1, j=172; ey, T,

This model also has the same limitations that probabilistic’and multiple coverage, differences

— 3 —




in facilities and multiple installation at one site are not considered.
Introducing the same concepts as in formulation of T2, model P1 can be modified as

P2. maximize X {1~ 71 J (1—pin)*t] %)
1= 7= =
subject to
D T Xie < 6
Jj=1 k=1
X : integer, i=12, =, 1,
k=1,2, -, n,

Thus model P2 maximizes the sum of coverage reliabilities within the budget available, .
It should be noted that T1 and P1 are special cases of T2 and P2, respectively, where
pisr=pir=20or 1, pi =1 for every 4, and X;x = Xi for every j, c;x =1 for every j and k.

3. A Branch-and-bound Algorithm

Taking logarithms of both sides of constraints in (2), model T2 becomes an integer program.
Thus, many algorithm strategies for integer programming can be applied. For model P1, a
heuristic algorithm was developed by Ignizio [2]. The algorithm can be applied to model P2
with alterations due to the difference between objective functions (3) and (4) [3]. However,
a branch-and-bound algorithm will be developed.

The model P2 can be modified as following without loss of generality.

P3. minimize 2 1171 A —p)*
ic1 1=

‘subject to
IZAI X, <
X, ! integer, 1=1,2, - w,
where w = rxn and ¢, > ¢, > -~ > ¢». Note that the decision variables are arranged in

descending order of its corresponding costs.

In order to use the branch-and-bound technique describe the problem as a tree in which
each node represents a subset of feasible solutions. A node denoted by a w-component vector,
Xu = (%1, %, - Xu 0,0, -, 0), where x« is the last nonzero component, represents a subset
of feasible solutions with X, = %y, X, = %, -+, Xu_; = xu_;. It should be noted that the vector
X is itself a feasible solution and so the value of objective function at this solution denoted
by z. is an upper bound for the node. Thus the minimum zu denoted by :u is an upper bound
for the whole problem.

From a node of xu= (%1, Xz **+, Xu, 0,0,, 0) a node of x», can be created whose components
are equal to X« except that vth (v > #) component is increased by one if x. can be a feasible

solution. That is, a new node can be expressed as
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Xy = Xu -+ €y, v=u, u-+1, -, w,

where e, is a unit vector whose components are all 0 except for a single 1 in the vth position,

To obtain a lower bound for a node of x», some definitions are needed. Let ¢ be the
maximum value of x» when the remaining budget with the .feasible solution x. is devoted
wholly to x» and j;;u be the maximum value of probabilities that customer 7 is covered from

Fth-kind (j == #) facility. That is,
t=[0— Zew) /el
where [x] means largest integer smaller than or equal to x, and

*
Div = max (ﬁiu, Disusry oy pi”’)~

Since ¢ is the maximum value of %« =+ Xu,; + -« + x» with the feasible solution x. and pft > pij
(j=u, wu-1,--, w), the value
m *
3L :i:ZII l£]1 (1 —pu)X” (I~pin)?
can be a lower bound. The node having 2. greater than or equal to z*u will be fathomed.
Now the algorithm can be stated;
Step 0. Start with a node of null vector representing the set of all feasible solutions with
Zu:;u:m and zr = 0.
Step 1. Let the node having least upper bound be xu = (%, %, -, %xu, 0,0, +-- 0). Create the
node, Xx» = Xu. + €v, (v =u, u+1, -+, w), if xv» can be a feasible solution.
Step 2. For each node calculate 2+ and zi. Revise z: if necessary. Store corresponding
solution as the incumbent solution.
Step 3. Apply fathoming rule to all remaining nodes, i.e., fathom the node if z: > z’:.
Step 4. If there is no remaining node, let the current incumbent solution as the optimal
solution and stop. Otherwise, go to Step 1.
The algorithm is illustrated by the following 4-customer, 3-facility problem.

4 3
minimize > I (1—p:)%
i=1 1=1

subject to
6x1 -+ 4x3 "i' Sxa ﬁ 12
X integer, =123,

where p’s are as follows.

facility j
customer 7 1 2 3
1 .85 .72 .55
2 .92 .65 .68
3 .75 .81 .72
4 . 86 .74 .60




%
At first it is convenient to form p:x matrix. It is given in Table 1.

*
Table 1. piu Matrix

u

customer ¢ 1 3
1 .85 .72 .55
2 .92 .68 .68
3 .81 .81 .72
4 .86 .74 .60

(2,0,0)

=25 1110 =24*

/La 0,0 (1,1,0)

242, B900 =2 =z . 1539
-2 D157

w9971 zu AL 0806 =24*

zL 2. 08N6

0, 0,0

©,2,0

_,,JI (1,2,0)

o T
]
zu==1. 0509 \‘\

21,0822 MO e 1,2

. e e
) }{ (0,0,2) } (0,0,3) I (5,045

Figure 1. Tree with All Possible Nodes

Figure 1 shows the tree having all of the possible 16 nodes with the corresponding values
of 2z, zr and zt. The nodes connected by dotted lines are not actually created. In this
example 8 nodes are created in the solving procedure. The upper bound for node (0,1,0), as
an example, is simply the value of the objective function at this feasible solution given by

z=(0-.72)+0—-.65)+1—.81)+(1—.74) = 1. 08.
With the remaining budget of 8 = 12—4, x; whose cost is 3 can have the maximum value of
=[8/3]=2
Thus the lower bound for this node is given by
2= (1—.72)*+ (1 —.65)*(1—.68) +(1—.81)*+(1—.74)° = 0. 0822,
The nodes connected by bold lines are those selected from which further nodes will be created.
The optimal solution is found as (1,0,2) with objective value of 0.0806.
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4. Computational Efficiency

To evaluate the efficiency of the algorithm numerical examples were generated in the
following way. The number of customers, , does not have any effect on the number of
nodes created and has linear effect on computing time. Throughout the experiment it is fixed
as 5. The cost, ¢j, is given by

1+ (—7)/ r—=D.
From this cost formula it is known that the most expensive facility cost, ¢- = 2, is double of
the cheapest facility cost, ¢i = 1. Then the cost ¢i; is generated from a random variable uni-
formly distributed on interval [¢; — 2(c;i = ¢io1)/ 3, ¢i 4 2(¢s+1 — ¢i)/ 3]. Note that one fourth
of ¢; and ¢;,, can be overlapped. The covering probabilities, pisx’s, are generated in the same

way as ¢i;’s but they are normalized to be values in [0,1]. The budget available, y, is
given by the sum of costs of lst-kind facilities, kZ,‘ ¢ix. Thus at least one facility of Ist-kind
=1

can be assigned to every site.

Table 2. Computational Results

mean No. of computing
No, No, of nodes time
rxn of possible created (second)
runs nodes
¢h) max mean(2) @)/ min ) max mean  min
2X 5 100 2.89-10% 5.94 102 3.19 102 (1.10 10%) 163.10% |k ES *
2X 7 100 1.56-108 5.47 10° 2.98 10° (1.91 1074 4.33 10 “ 4 2 B3
2X10 50 6,67-108 2.11 10° 1.27 105 (3.16 107%) 4,04 10* ‘: 150 104 28
3x 5100 2.72-10° | 1.85 10° 9.15 10° (3.36 1079 4.11 102 ‘ 1 % *
3% 7 100 3.75-107 w 2.45 104 1.33 104 (3.55 10°2) 7.76 10° } 17 7 4
310 50 6.55-101° 3.27 108 1.61 10° (2.46 1074 8.23 10t 1 340 112 37
5% 5 100 5.97-10° 1.36 10% 5.00 10° (8.40 107%) 1.73 10° C6 2 1
5% 7 50 2.98-10° 4,08 10° 1.38 10° (4.63 107%) 3.78 10¢ | 348 118 32
7X 5 100 5.14-107 : 3.50 10% 1.77 104 (3.44 107%) 3.18 10° i 14 7 1
7X 7 50 6.34-10'° 1.26 108 5.80 10° (9.16 107%) 1.99 10° l 828 381 177

% less than 1 second

The number of feasible solutions having 3 X2 = ¢; (j=1,2, -, 7) is given by
k=1

ﬁ riti1Cyy ®
=1



where «Cb is the combination of « things taken & at a time. From the formula, it can be seen
that the number of kinds of facilities, 7, and the number of sites, &, as well as budget
available, y, have significant effect on the number of nodes created and so computing time.
The numerical examples are generated for the combinations of selected values of » =2,3,5,7
and # = 3,7,10,15. The computer code has been developed and used to obtain the computational
experience in Table 2. The code is written in FORTRAN 77 and has been tested on IBM
4341/M1}l. The computing times exclude the time to read-in, set-up and printout.

The table shows that the ratio of mean of nodes created to mean number of possible
nodes decreases as # increases. From this ratio, computing time and formula (6), it can

be inferenced that problems of size up to 10Xx10, can be solved in 2 or 3 hours.
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