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Enhancement of Noisy Speech by
Frequency-Domain Block LMS Algorithm
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ABSTRACT

In this paper, enhancement of speech corrupted by additive white or colored noise is studied.
The unconstrained frequency-domain block least-mean-square (UFBLMS) adaptation algorithm and
its frequency-weighted version are newly applied to speech enhancement, and their performances
for enhancement are analyzed, For enhancement of speech degraded by white noise, the performance
of the UFBLMS algorithm is superior to the spectral subtraction method or Wiener filtering technique
by more than 3 dB in segmented frequency-weighted signal-to-noise ratio (FWSNRgp) when SNR
of speech is in the range of 0 to 10 dB.

As for enhancement of noisy speech corrupted by colored noise, the UFBLMS algorithm is
superior to that of the spectral subtraction method by about 3 to 5 dB in FWSNRgEG. Also. it
yields better performance by about 2 dB in FWSNR and FWSNRgg than that of the time-domain
least-mean-square {TLMS) adaptive prediction filter (APF).

In view of the computational complexity and performance improvement in speech quality and
intelligibility, the frequency-weighted UFBLMS algorithm appears to yield the best performance
among various algorithms in enhancing noisy speech corrupted by white or colored noise.
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I. INTRODUCTION

The enhancement of noisy speech has been
investigated by many researchers. As a result,
various enhancement methods have been sug-
gested and developed. Lim and Oppenheim
surveyed the previous studies on enhancement
of speech degraded by additive noise [i].
Speech enhancement may be done by one of the
following three approaches, The first approach
is to exploit certain perceptual aspects of
speech. By high-pass filtering fricative sound
and inserting short pauses before plosive sound,
significant improvement in intelligibility has
been obtained {2]. Also, the short time spectral
magnitude has been used to enhance noisy
speech [3], [4]. In these algorithms, enhanced
speech is obtained by combining the estimated
spectral magnitude of speech with the short

time spectral phase of the degraded speech.

The second approach exploits the fact that
voiced portion has quasi-periodicity. The
periodicity of a waveform is considered as
harmoni¢cs with the fundamental frequency
corresponding to the period of the time wave-
form in the frequency domain. Since the
energy of a periodic signal is concentrated in
the repetitive frequency bands and the interfer-
ing signal has in general energy over the entire
frequency bands, comb filtering can reduce
noise. while preserving the desired signal [5],
[6]. Although this approach is appilicable
potentially to many different types of additive
noise, it requires accurate pitch estimation
which is difficult in the presence of noise.

The third approach to speech enhancement
is to exploit a speech production model, In this
case, speech is modeled by the response of an
all-pole or pole-zero linear system representing
the vocal tract driven by an excitation function.

The parameters of the speech model are esti-

MRERP R4S 2% (1985)

mated, and then enhanced speech is generated
by the synthesis system based on the same
speech model or with the estimated speech
model parameters [7], {8]). Although the per-
formance of these systems has not been formally
evaluated, some improvement in speech quality
but little improvement in intelligibility have
been reported. In addition, to reduce narrow-
band noise, the use of a time-domain filter has
been investigated. It may be formed from the
inverse transform of the inverse of the estimated
noise spectrum. This filter can be implemented
using a time-domain noise suppression filter that
is adapted segmentally based on samples of
background noise [9].

The speech enhancement schemes discussed
above have been applied to one input degraded
by additive noise. If there are more than one
input available for processing, further enhance-
ment is possible. Each individual input may be
processed separately using the speech enhance-
ment system, and then the processed inputs may
be appropriately combined. Examples are the
adaptive noise cancelling algorithms in which
comrelation of noise in several inputs is exploited
(10}, (11]. Although these algorithms enhance
noisy speech dramatically, and adapt well to
changing noise statistics, they have some limita-
tions in practical applications, For example,
if the reference input contains some signal com-
ponent, the noise canceller attempts to cancel
the input signal as well as noise.

In this paper, a new enhancement technique
using the unconstrained frequency-domain block
least-mean-square (UFBLMS) algorithm is pro-
posed for speech corrupted by white or colored
noise. The performance of the newly pro-
posed method will be compared to those of

To test the
effectiveness of each enhancement algorithm,

existing enhancement algorithms,

we use objective measures such as frequency-



Fue 49 35 IMS ¢ FE o) § Aol dAd S48 3AMKA 15

weighted signal-to-noise ratio (FWSNR) and
segmented FWSNR (FWSNRggg) that are
closely cormrelated with perception [12}].

Following this introduction, in Section II
the new UFBLMS algeorithm for enhancement of
noisy speech is introduced. In this section,
we will also discuss how one can apply this
algorithm to enhance noisy speech corrupted
by white or colored noise. In Section III, the
refative gain by the use of the UFBLMS algo-
rithm for enhancement of noisy speech is ex-
amined. In Section IV, computer simulation
is done to investigate the performance of various
algorithms for enhancement of noisy speech.
The performance improvements resulting from
the use of various enhancement techniques are
compared by objective quality measures. In
addition, we consider the computational com-
plexity of each enhancement aigorithm. Finally,
in Section V, conclusions are made.

II. THE UFBLMS ALGORITHM WITH OR
WITHOUT FREQUENCY WEIGHTING

Before discussing the frequency-weighted
UFBLMS algorithm, we first consider a
UFBLMS ADF. Realjzation of the UFBLMS
ADF is shown in Fig. 1. Here, we assume that
the impulse response of the UFBLMS ADF con-
sists of M weights, and that the stationary input
signal is processed block-by-block, each block
having L data. In the following discussion, we
use ‘k’ for the block index. Also, we use the
notations X, y, and d, for the filter input,
output and desired response, respectively. The

UFBLMS ADF can be obtained by minimizing
the frequency-domain block mean-squared error
(FBMSE) defined as

FBMSE = e"®PAE(s,"s, ) 03]

where the column vector ex of N elements is

the discrete Fourier transform (DFT) of the
augmented time-domain error vector in the
k¢ block. To obtain the error vector, the filter
output is computed by linear convolution of the
input and the time-domain weights. This linear
convolution may be computed by the fast con-
volution approach using the N-point fast Fourier
transform (FFT) and the overlap-save sectioning
method. The length N for the FFT is N=L+M-~
1+Nz, where Nz is the number of appended
zeros.

In the UFBLLMS ADF, the frequency-domain
error vector e, in the k-th block is given by

ax = dy— Po, Ll W) 2)

where d, and W, are the (Nx1) desired response
and filter weight vectors, respectively, both
in the frequency domain, and Xy is an (NxN)
diagonal matrix whose diagonal elements are the
transformed input data. In (2), the (NxN)
matrix P, , realizes the sectioning procedure
needed for computing the filter output, and is
defined as

Pouafl g S IF 3)

where F is an (NxN) discrete Fouder trans-
form matrix, I, denotes and (LxL) identity
matrix, and 0 is a zero matrix.

As a performance criterion in adjusting the
filter weights, we use the frequéncy-weighted
block MSE¢ f¥" defined by [13]

e AE ey Hey) 4)

where the asterisk and E[+} denote complex-
conjugate transpose of a matrix and statistical
expectation, respectively. In (4), His an (NxN)
diagonal matrix whose diagonal elements are

of nonnegative values, and their magnitudes re-
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present the relative significance of each fre-
quency component. Following the same
approach used for the UFBLMS ADF [14],
we can have from (2) and (4) a gradient of the
frequency-weighted block MSE  with respect
to W, as

P o 2B (X Po.L Hey ) (5)
e W) = T koL P8k
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Thus,
gracient, we obtain from (5) a frequency-

using an  instantaneously estimated
weighted UFBLMS weight adjustment algorithm

as the following:
W =W+ e xk*PO,L He, (6)

where p is a convergence factor that controls
the convergence behavior of the algorithm.
In Fig. 1, a block disgram of the frequency-

SAVE L
THE LAST / P/S OUL:UT
L DATA

LML DESIRED
cne -. RESPONSE
dn

AT THE BEGIN' .

frequency-

weighttd UFBLMS ADF's using FFT and
overlap-save sectioning procedure (N=L+M-1+
N,, LAL-1+N, MAM-1+N,, and N, > 0).
[Note: UFBLMS ADF js realized with the
position “*A” connected and frequency-
weighted UFBLMS ADF is realized with
the position “B” connected. N, is the

number

z

of zero data needed for

augmenting the input data, thereby
allowing to choose a suitable transform

of length N.
conversion
conversion.|

S/P = serial-to-parallel

and P/S = paraliel-to-serial



Fobs 9o £5 LMS g 3F & o) 8¢ A8 A 49 FAAA 17

weighted UFBLMS ADF using the algorithm
of (6) is shown together with that of the
UFBLMS ADF, It is noted that, when H is
an identity matrix, the frequency-weighted
UFBLMS algorithm becomes identical to the
UFBLMS algorithm since Py,. e =e; . Also,
it is noted that, when L is sufficiently jarger
than M, Po,. can be approximated as an iden-
tity matrix. In that case, one can eliminate
the FFT and inverse FFT operations that
are needed just after the frequency weighting
operation in the frequency-weighted UFBLMS
ADF. In this work, we apply the UFBLMS
and frequency-weighted UFBLMS algorithms
discussed above to the enhancement of speech
degraded by white or colored noise. Frequency
weighting is done by using different convergence
factors for each frequency component.

For noisy speech corrupted by white noise,
enhanced speech is obtained by filtering the
noisy speech through the UFBLMS or fre-
quency-weighted UFBLMS ADF. This is shown
in Fig. 2-(a). Note that, unlike the conventional

NOISY SPEECH UFBLMS ENHANCED SPEECH
ADF
(a)
NOISY SPEE: ENRANCED
Y CH SPEECH
+ _f;\
UFBLMS
ADF
S
!
|
SPEECH/SIENCE | _ _ _ _ _ _ JI
DECISION

(b}

Fig. 2. Systems for enhancement of noisy speech by
the UFBLMS algorithm.
{a) For speech corrupted by white noise
{b) Forspeech corrupted by colored noise

algorithms such as the spectral subtraction
method and the Wiener filtering method, the
proposed enhancement algorithm requires no
speech/silence discrimination. Hence, the com-
putational complexity of the UFBLMS algo-
rithm is simpler than those of the conventional
enhancement aigorithms,

As for noisy speech corrupted by colored
noise, we obtain enhanced speech by using a
noise suppression filter based on the UFBLMS
algorithm as shown in Fig. 2-(b). In thisscheme,
when noise in a silence interval is detected, the
adaptive algorithm adjusts the weights of the
noise suppression filter such that the error
signal is minimized. When speech is detected,
the adaptation algorithm is tumed off, and
the values of filter weiglits are kept at their
current values, Adaptation resumes whenever
speech activity no longer occurs.

III. PERFORMANCE OF THE UFBLMS
ENHANCEMENT ALGORITHM

We study first the performance improvement
obtainable by using a UFBLMS ADF for noisy
speech corrupted by white noise. The noisy
signal degraded by additive white noise, X, (k),
may be expressed as

R (k) A B(K) +ny(k) k=1, 2, (7}

where s(k) and n,(k) are the kg, samples of
clean speech and white noise, respectively.
Here, we assume that s(k) and ngy(k) are
mu tualty uncorrelated.

We can estimate s(k) from M observations
of the noisy speech as [15]

M
2
B Bagxlkeed o (8)

gex%l
€50
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where the coefficients {ag} are chosen to mini-
mize the mean-squared interpolation ermor given
by

[t [ 14

emo Blx (k)— Mag X (k=£) )2 (9)
¢=-3
£+0
Using the orthogonality principle, one can show
that the coefficients tag) are the solution of the
Wiener-Hopf equations

M
Z
5oagplk-f)=p(k) k=x],*2 - +5
¢=H
0

where p(k) is the convariance function of noisy
speech Xy (k). Once the coefficients {ag) are
determined, we can get the estimate {s(k)} from
(8).

To investigate the performance gain resulting
from the use of the UFBLMS enhancement
algorithm discussed above, we define the impro-

vement factor  as

SNR.
SNR,. an

e

Here, SNR . is the SNR of speech prior to
enhancement, and is given by

3 2
iz & )

SNRpep yp—— (12)
2 ml)

1

J

where J is the number of total speech samples.
And, SNRe is the SNR after enhancement, and
is expressed as

J
L st j)
=1
SNR, & - 2 T "
Z [s(i)- _“aga{j-ﬁ)-iml‘,ﬂ'{i-ﬂ}’ (13)
R R
£0 &0

BETBPNE %2 W

From (11), (12) and (13), we can note that
the improvement ratio n becomes larger as the
estimated speech approximates real speech more
accurately.

Next, let us consider the performance gain
by a UFBLMS noise suppression filter for speech
corrupted by colored noise. The noisy speech
corrupted by colored noise, xc(k), may be re-
presented by

xc (k) & s{k) +n.(k), k=12, (14)

where s(k) and nc(k) are the samples of clean
speech and colored noise, respectively. Again
we assume that s(k) and nc(k} are mutually
uncorrelated.

From M observation of noisy speech, we can
estimate n c(k) as follows:

¥
f(k) > %
50

agx, (k-8) k=12, (15)

where the interpolation coefficients {ap} are
chosen to minimize the mean-squared error

given by
7
gmoB(x.(k)- X 8x.(k-£})2 (16)
¢=-Y
£¥0

where the coefficients {ag} are the solution of
the Wiener-Hopf equations.

Once the coefficients are determined, we
can obtain the estimate {nc(k)} from (15).
Then, we obtain enhanced speech s(k) from
(14). Also, using (ag}, we can form a transversal
filter (see Fig. 2-(b)) for suppression of the
colored noise as the following:

M
A(z) &l- 2 agzk
z -
M x

(17
k=- Y )
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M
We can note that the tap weights lH(!l)}ﬁz:_%et

for the impulse response of the noise suppres-
sion filter are related to the interpolation co-
efficients {ay} by

HO)=1, K& =- 8y, ¢=21,22,~ % (18)

Thus, the enhanced speech is given by

I M
) = % H( Ao (k-0)+ E‘“ H o lk-a) k=12, (]9)
;.-% =

Consequently, from (11) and (19), the improve-
ment factor n is expressed as

I 2
£
ki
3 ¥ % (20)
L (s{f)- I H(OH2()-8)- E H(#n. (§-H)3*
=y =

From (20}, it may be noted that the performance
gain of the UFBLMS algorithm can be larger
than that of the prediction filter using various
LMS algorithms. The reason is due to the fact
that, unlike the APF algorithm which uses only
backward information, the UFBLMS algorithm
is based on forward and backward prediction.
In other words, the colored noise can be sup-
pressed more by an interpolation filter than
by a prediction filter,

IV. SIMULATION RESULTS AND
DISCUSSION

In this section, we first investigate the per-
formance of the proposed UFBLMS algorithm
by simulation when noise is white, and compare
it to those of the existing enhancement tech-
niques, such as the spectra] subtraction method
{3) and the Wiener f{iltering method {1], by
various objective meausres. As the input to

these systems, real speech bandlimited to 3.4
kHz and sampled at 8 kHz was used. To obtain
noisy speech, we generated white Gaussian noise
using a random number generation prgoram. We
then processed it by a low-pass filter whose 3 dB
cutoff frequency was 3.4 kHz, and added the
resulting noise to the clean speech.

Table I shows the results of speech enhance-
ment by various enhancement algorithms, We
can see from this table that the improvement
resulting from the use of the UFBLMS algorithm
is similar to that of the frequency-weighted
UFBLMS algorithm. Also, it is noted that the
performance can be improved significantly for
noisy speech by the UFBLMS algorithm. Per-
haps, the reason may be due to the fact that
UFBLMS algorithm is based on forward and
backward prediction, and enhancement is done
Also, we can note
from Table I that the improvement by various

in the frequency-domain.

Table I. Performance improvement resulting
from enhancement algorithms for
noisy speech corrupted by white

noise,

Input SNR
En-
hancement
Algorithm

Measuze 0dB [5dB [10dB

UFBLMS FWSNR 11.88[14.26 [14.40

FWSNRgpgi 7.03 |11.52 (1345

Frequency-weighted | FWSNR " 111.79|14.30 [ 14.40
UFBLMS

FWSNRgEc| 6.87{11.38 |1345

Spectral subtraction | FWSNR | 9.87(12.78 ] 16.38
ith Hameni
o B FwsNRgg| 351 643 10.1

window
FWSNR 10.56 [13.3216.68
FWSNRgg]| 443 7.21 (1062

Wiener filtering

Note: Noisy speeches of 0, 5 and 10 dB in SNR cor-
respond to those of 5.0, 8.35 and 12.69 dB
in FWSNR, and -1.53, 1.81 and 6.15 dB in
FWSNRgE. respectively.
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enhancement algorithms decreases as the SNR
of input noisy speech becomes higher. The
reasons are thought to be due to the nonsta-
tionary characteristics of speech and also be-

cause noise spectrum is estimated approxima-
tely, When frequency-weighted objective
measures arc used as performance criteria, we
can see from Table 1 that the UFBLMS algo-
rithm is superior to the spectral subtraction
method or Wiener filtering technique by more
than 3 dB in FWSNRcg.

Fig. 3 shows waveforms of clean speech. 5
dB noisy speech and enhanced speech by various
enhancement algorithms. We can nate from this
figure that the enhanced waveform by the
UFBLMS algorithm is closer to the clean speech
than those obtained by the other two enhance-
ment techniques. Also. we can note that, unlike
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Fig.3. Waveforms of clean, noisy and enhanced

speech.

(a) Original clean speech

(b) 35 dBnoisy speech

(c) Enhanced speech by the spectral subtrac-
tion method with Hamming window

{d) Enhanced speech by the Wiener filtering

(e) Enhanced speech by the UFBLMS algo-
rithm
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other existing methods, noise suppression by the
UFLBMS algorithm is done very effectively.

In addition, Fib. 4 shows linear predictive
coding {LPC) spectra of clean, noisy and en-

SPECTRAL MAGNITUDE @B)

-10 L L i 1 1 1 1 J
2 1 2 3 4

FREQUENCY (kHz)

Fig. 4. Spectral envelopes of clean, noisy and enhanced
speech.
(a) Original clean speech
{b) 5 dBnoisy speech
{c) Enhanced speech by the spectral subtrac-
tion method with Hamming window
(d) Enhanced speech by the Wiener filtering
(¢) Enhanced speech by the UFBLMS algo-
rithm
hanced speech by various enhancement algori-
thms. It can be seen that the LPC spectra of the

enhanced speech by the UFBLMS algorithm

approximates the LPC spectral envelope of clean
speech most closely among the three enhance-
ment techniques. especially in the frequency
range of 1 to 3 kHz.

Also, it is worthwhile to mention that, with
the UFBLMS algorithm, highpass filtering may
be combined with the enhancement algorithm to
improve speech quality and intelligibility. That
is. high-pass filtering can be done simultaneously
with enhancement in the frequency domain. In
this case. different convergence factors may be
used for each frequency component.

Next. we tnvestigate the performance of the
UFBLMS enhancing algorithm when the noise
is colored, and compare it to those of the exist-
ing enhancement techniques. such as the spectral
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subtraction method [3] and the adaptive pre-
diction filtering (APF) method [9], by objective
quality measures.

To obtain noisy speech corrupted by colored
noise, we generated white Gaussian noise. Then,
we processed it by a band-pass filter, and added
the resulting noise to clean speech. Fig. 5 shows

the average noise spectrum of which narrow-
band ridges correspond to the fundamental
(1550 Hz) and first harmonic (3100 Hz) narrow-
band noise of the helicopter engine [3]. For
speech/silence discrimination which is required
as a part of the enhancement algorithm for the
colored noise case, we used a speechfsilence
detection method based on spectral magnitude,
power and autocorrelation of segmented speech
[16].

SPECTRAL MAGNITUOE (dB}

-10 L I . 1 .

wi-
sl

FREQUENCY (kHz)

Fig. 5. Spectrum of colored noise.

Table II shows the improvement that results
from the use of various enhancement algorithms.
When the FWSNR and FWSNRgpg measures
are used as performance criteria, the improve-
ment by the UFBLMS algorithm is more than 7

dB. Also, we have found that the performance
of the UFBLMS algorithm is almost the same as
that of the frequency-weighted UFBLMS algor-

ithm. However, according to our intetligibility
test, the frequency-weighted UFBLMS algorithm
appears to be more effective for improvement of

speech intelligibility. It is noted that the perfor-
mance of the UFBLMS algorithm is superior to
that of the spectral subtraction method by
about 3 to 5 dB in FWSNR and FWSNRggG-
Also, the performance of the UFBLMS
algorithm is better by about 2 dB in FWSNR
and FWSNRggq than that of the APF algor-
ithm.

Table [l. Performance improvement resulting
from enhancement algorithms for
noisy speech comrupted by colored

noise.
Input SNR
En- aB [5dB [10dB
hancemen Meisur 0
Algorithm \
UFBIMS FWSNR 14.2711642 18,77

FWSNRgg| 8.50[10.68 [13.07

Spectral subtraction | FWSNR 649| 9.71 |13.83

with Hammung
window FWSNRgpg( 1.34] 4.54 | 8.60
Adaptive prediction | FWSNR 11.82]14.14 [16.41

filtering FWSNRgEG | 6.38| 9.06 [12.04

Nate: Noisy speeches of 0, 5 and 10 dB in SNR cor-
respond to those of 3.74, 7,00 and 11.29 dB
in FWSNR, and -2.04, 1.22 and 5.51 dB in
FWSNRgE(, Tespectively.

Fig. 6 shows waveforms of clean speech,
noisy speech and enhanced speech by various
enhancement algorithms. It can be seen from
this figure that the waveform enhanced by the
UFBLMS algorithm is closer to clean speech in
comparison with other enhancement techniques.
Also, Fig. 7 shows LPC spectra of clean speech,
noisy speech and enhanced speech by various
enhancement algorithms. It is seen from this

figure that the spectral envelope by the
UFBLMS algorithm is closer to the spectral
envelope of clean speech than other enhance-
ment techniques.

Finally, let us consider the computational
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of computations than the spectral subtraction
method or the Wiener filtering technique. For
cnhancement of noisy speech corrupted by
white noise. we can see that. unlike the existing
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ta) Original ¢lean specch
(hy 3 dB noisy speech degraded by colored
noise
{vi Fahanced speech by the spectral sub-
suction method witlh Hamming window
{1} babanced speeci by the TTMS adaptive
Pre ke tilter
v Patiarcad speech by the UFBLMS algo-
rdn st
complexity of cach enhancenment algorithm in
cwew ob application to a narrow-bund speech
COMPTESSion  system, For convenience. we
assume that the speech enhancement subsystem
ts cascaded with a vocoder. and that noise
characteristics such as power spectrum and pre-
diction coefficients are known. Hence. we do
nat consider the computational complexity for
obtaining noisc characteristics.

Let N. M and [ be the frame length. the
number ol prediction coefficients and the out-
put data length. respectively.  Then. we can
obrain  the complexities  of
Tables [Il
in these Tables we can see that

comtpriatational
various  algorithms  as shown in
thirough V1.

the UFBLMS :1gorithm requires far fess number

speech,

(a} Original clean speech

(b) 5 dB noisy speech corrupted by colored
noise

{c) Enhanced speech by the spectral subtrac-
tion method with Hamming window

(d) Enhanced speech by the TLMS adaptive
prediction filter

(¢) Enhanced speech by the UFBLMS algo-
rithim (=0.9)

Table Ill. Number of multiplications required
for the UFBLMS algorithm enhancing
noisy speech corrupted by white noise
(N=252, M=10 and L=243),

Operation Multiptications
UFBLMS DFT 3 Npoint DFT 2544
Computation of output in 4 x (-l:i) 504

the frequency domain <
Computation of estimated 4x (__DL) 504
gradient in the frequency 2
domain
Adjustment of weights N 126
Total 3678

For DFT, we use the N point DFT by the
nested algarithm [17] .

Naote:
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Table IV. Number of multiplications required
for the spectral subtraction method.

(N=252)
Operation Multiplications
DFT of noisy speech N point DFT 848

Square of noisy speech spectrum

Square root of enhanced
spectrum (Square root =< 20
multiplications)

Phase information

(Division = 10 multiplications)

Enhanced speech in the
frequency domain

[nverse DFT of enhanced speech
in the frequency domain

N 504
10N 2520
5N 1260
N 252

N point DFT 848

Total

6232

Table V. Number of mult

iplications required

for Wiener filtering based on all-pole

modeling, (N=252, M=10)
Operation Multiplications
Autocorrelation of noigy speech | (M+1)}N 2772
Calcutation of prediction M? 100

coefficients

Spectral envelope of noisy speech

Optimum filter design
{Division 2¢ 10 multiplications)

Enhanced speech spectrum

Enhanced speech waveform

N point DFT 848
5N 1260

N 252
N point DFT 848

Total

6080

Table Vi. Number of multiplications required
for noise suppression filter using
TLMS or UFBLMS algorithm (M=10,

L=243).
Operation Multiplications
Enhanced speech LxM 2430
Total 2430

enhancement algorithms, the UFBLMS algori-
thm does not require speech/silence detection
for which the amount of computations can be
fairly large. Mor¢over, high-pass filtering can be
combined into the frequency-weighted UFBLMS
algorithm to enhance noisy speech corrupted
by white or colored noise. Hence, in view of the
computational complexity and improvement in
speech quality and intelligibility, it is preferred
to use the frequency-weighted UFBLMS algor-
ithm for enhancement of noisy speech.

V. CONCLUSIONS

In this paper, a new technique using the
UFBLMS algorithm has been proposed to ¢n-
hance noisy speech degraded by white or
colored noise, and evaluated by various objective
measures.  Also, the improvement by the
UFBLMS algorithm for noisy speech has been
considered analytically.

According to the simulation results for
speech cotrupted by white noise, the UFBLMS
algorithm is superior to the spectral subtraction
method or Wiener filtering technique by more
than 3 dB in FWSNRgg when SNR of speech
is in the range of O to 10 dB. In general, the
improvement decreases as the SNR of input
With the UFBLMS
algorithm, high-pass filtering may be combined
with the enhancement algorithm to improve the
speech quality and intelligibility further.

For degraded speech by colored noise,

the performance of the UFBLMS algorithm is
superior to that of the spectral subtraction
method by about 3 to 5 dB in FWSNR and
FWSNRggG- Also, the performance of the
UFBLMS algorithm is better by about 2 dB in
FWSNR and FWSNRggg than that of the
TLMS APF aigorithm.

In view of the computational complexity

speech becomes higher.



and improvement in speech quality and in-
telligibility, it can be concluded that the
frequency-weighted UFBLMS algorithm yields
the best results among various algorithms so far
proposed in enhancing noisy speech corrupted
by white or colored noise.
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