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An approximate solution of the Fokker-Planck equation with the nonlinear drift term due to a Schldgl model is obtained and 
the result is compared with the methods proposed by Suzuki. Also the effect of nonlinearity on the correlation length at the 
stable steady state is studied.

Introduction

In recent years, there have been considerable interests in the 
behavior of systems far from the thermodynamic equilibrium, 
which exhibits instability. Such phenomena are observed in 
many fields14. Especially, the laser model5 draws a great at
tention. Recent investigations of several authors6- 7 have pro
vided the analogy between transitions in unstable systems and 
phase transitions. Their theory is applicable to any system whose 
macroscopic behavior is governed by nonlinear evolution 
equations.

If there is no random force which is caused by internal 
microscopic fluctuations, a system in an unstable state does not 
undergo decaying process. Once the decay of the unstable state 
is initiated, fluctuations are amplified by the linear contribu
tion which shows exponential divergence. Later, these fluc
tuations are affected by the nonlinear effect and then have the 
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finite steady state value. This fact has been studied from the 
Langevin eq. by Suzuki8 with his scaling theory and also by 
Valsakumar and his coworkers.9

Also several authors have tried to obtain the probability 
distribution function satisfying the Fokker-Planck equation. 
Among them, Suzuki8, 10 has divided the whole range of time 
into three parts, that is, initial, intermediate and final regimes 
and introduced the scaling theory connecting the initial and in
termediate regimes. This theory is successful in describing the 
intermediate regime but does not describe the final steady state 
properly. Later, he has proposed the unified theory11 using the 
properties of the exponential streaming operator. In addition, 
Valsakumar12 has obtained the formally exact probability 
distribution function using Trotter*s formula, but it has a rather 
complicated form and is difficult to handle.

In this work we study a chemical system which can be describ
ed by a stochastic variable governed by a Fokker-Planck equa
tion. The nonlinear drift term in the Fokker-Planck equation 



296 Bulletin of Korean Chemical Society, Vol. 6, No. 5f 1985 Kyung Hee Kim, Kook Joe Shin, Dong Jae Lee, and Seok Beom Ko

is given by a Schldgl model which exhibits a second order phase 
transition. Recently, one of us reported the dynamic proper
ties of a system near the stable steady state.15 The model adopted 
there was another Schldgl model exhibiting the first order phase 
transition. Following their generalized version of Suzuki's scal
ing method of solution, we obtain in the first section an ap
proximate solution of the Fokker-Planck equation with the 
present Schldgl model and also we get the second moment of 
the stochastic variable of the chemical system. In the next sec
tion, the time-dependent correlation length near the stable 
steady state is obtained by substituting the variable satisfying 
the rate expression into the equation which we treat. This 
method shows the effect of nonlinearity at the stable steady 
state.

Theory

As an example of the system exhibiting the second order phase 
transition, let us consider a Schldgl model, which is given by

= (1)
where a and p are assumed to be positive constants, A is a pum
ping parameter, and F[X] is the nonlinear rate expression. 
Another Schldgl model investigated earlier by one of us15 con
tains a cubic term, 一 0X (f, t)3, instead of the above quadratic 
term and it belongs to a different category of stability which 
leads to the first order phase transition behavior. The present 
model exhibits a second order phase transition as discussed 
below.

This model describes the derivative of the concentration of 
the intermediate X with respect to time in the following chemical 
reaction scheme with concentrations of other species being held 
constant.

A+X=2X
B+X 느 C (2)

Steady states of eq. (1) are determined by the solution of the 
equation, F (X으 人:) = 0. In Figure 1 we plot the curve 
Y = as a function of X% If the value of Y becomes
smaller than a certain transition value of Y 그 |Ag|, we have two 
roots which correspond to two steady states. Since X£ is con
tinuous at the transition point, |A$| = a2/4p, this model is 
regarded as showing the second order phase transition. The rela
tionship between X斜 and is shown better in Figure 2. From 
the linear stability theory it is well known that the steady state 
is on the stable branch if the first order derivative of AJ with 
respect to X= is positive and it is on the unstable branch if the 
derivative is negative. At the marginal stability point the 
derivative vanishes. For simplicity we let A = 0 in the Schldgl 
model. Then, X= = 0 and Xg = a/p correspond to the unstable 
and the sta비e steady states, respectively.

Inhomogeneous nonlinear Langevin equation for the 
stochastic variable X (f, t) is given as

W。-기기X (E +F〔X (s〕+ 〃 侦, t) ⑶di
where D is the diffusion coefficient and rj (f, t) is a random 
force which satisfies the Gaussian condition.16

<77(fi)>-0

혀gui用 2. 가辎 dependence of X®T on 사

Here, d (X) is the Dirac delta function. The equivalent Fokker- 
Planck equation to the above Langevin equation is

으P (X"= - 으 ｛〔D 广 x+F〔X (E〕〕F (X, t)｝ +

。&戸P(X, t) (5)

(A) An approximate method to the solution of the nonlinear 
Fokker-Planck eq. with the Schlbgl model.

Now let us consider the general Fokker-Planck eq. given by 

으P(x,t) = -으〔F(X,t)F(X,t)〕

+으 斜 (X,t)F(X,t)〕｝ ⑹
where A (X, t) and F (X, t) are the functions of X and t. This 
equation corresponds to the homogeneous Langevin equation, 
ie» eq. (3) without the diffusion term.

We assume that the general solution P (X, t) has the follow
ing form

P(X,Z)・N0 ⑴/a(f)〕H'(X,E)exp〔-X)H(X,t)，〕(7) 
where N is the normalization constant, a(t), b(t) and y(t) are 
functions of time, and H(X, t) is a functional of X and t. The 
prime in the expression H '(X, t) denotes the differentiation with 
respect to X. This form of the solution is a generalization of 
the scaling solution of Suzuki10 in that his expression contains 
a functional of Xt f(X), which appears in a similar fashion as 
in eq. (7) whereas our H (X, t) is a functional of both X and 
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t. The earlier work15 by one of us also employed this assump
tion implicitly in the analysis of another Schldgl model. We 
substitute eq. (7) into eq. (6) and assume the following relations:

(8a)

Then we obtain three relations:
rr，y . 3H(Xj)

at 〕
허%쁘=4。")"丫 ⑴ 2 di

db (t)/dt da(t)/dt ，■> , . 2 “、
~b(T)---帀—F) ”)

From the above equations, we obtain the solution of eq. (6)
in the following form

(8b)

(8c)

(8d)

H (X,t)
P(X")=——丄

링f+c」〕흐
, H(X,甘X exp \ ■—

4( / a(r)idr+c1)
⑼

where ct = l/4y(o).
If we keep only the linear term in F (X, t) with A (X, 

t) = D \ we get from eqs. (8b) and (8a).

a(t)=D^~ exp(-ai), (10)

For this linear case we obtain the following solution

p /V q r 2 [丢 ,(X- 2 I —P(X,t) =〔一万--- 戶、exp{------ - ---------------------
F스 3皿—1) 2[-(e2at-l)]

a a

where we let Ci =0 for simplicity.
This is the well-known Ornstein-Uhlenbeck solution.13 

Therefore, it might be a reasonable approximation to choose 
a(t) = D"」e-허 for the nonlinear case. The resulting nonlinear 
probability distribution, P (X, t), is given by

火xu)=〔湍泸 @叫)仲…으豁} (⑵ 

where in our model

D(i)=-(e2at-l) (12a)
a

H(X3)=XeF〔l-d-X(l-e-")〕-' (12b)
a

G (X, t) =eatH(Xy t) =X〔1-色X(l-e"')〕-' (12c)
a

and the prime in the expression G'(X, t) denotes the differen
tiation with respect to X. As time goes to infinity, this probabili
ty distribution becomes Suzuki's scaling solution10 in the 
following form:

EX”)=〔주第*(13) 

where
睥=으*아 (13a)

a
G(X)=X〔1-£~X〕t (13b)

a

At the stable steady state, the probability distribution is given by

P(X아)哄{宀 糸X，+을金 } (14)

where A is a normalization constant. The time evolution of the 
probability distribution is shown in Figure 3.

Figure 3. The dependence of P(X,t) on time. 
応=。=1, D = 0.1).

If the diffusion term is included in the rate expression, the 
probability distribution may be obtained in the long time and 
weakly nonlinear regime according to the method of Kawasaki 
and Kim.17.

The average of X (t)2 depending on time is

<x(t)2〉=J「dx x2p(xe)//*x p(x,t) (is)

Using eq. (12), we have

<x⑴‘〉=沖广〔^变—〕2 心)厶1+但(1_厂质
a

xexp〔-务科 dG (16)

Explicit calculations are given in Appendix. As time goes to in
finity, its limiting value is (a/", i.e.,

快 <X(t)，〉= (등): (17)
p

The average value of X= at the stable steady state is given by

<X» (Xsl)/fJdX3tP (X“). (18)

For arbitrary a and 0, we can obtain this value by the numerical 
integration using Simpson's formula and we found that

<Xlt>-lim<X(i)2>. (19)

(B) Time correlation functions for the fluctuating variables.

In this section, we shall discuss the time correlation functions 
at a stable steady state when the system relaxes from an unstable 
state.

In order to consider the effect of the random force on the 
variable> let us separate the variable into two parts, that is, the 
variable X° (ff t) governed by the rate expression and a fluc
tuating part due to the random force, dX (r, t).

Then we obtain

으 X- (rJ)-D 俨X。(r, t) + aX» (E —用鄭 (r, t)! (20a) 
di I 
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으t &X (r, t) =D 卩勺X (r.t) +〔a —2/9X。(r, t)〕SX (f, t) 

—BgE 牛KE. (20b)
Eq. (20b) can be written as

a
都X& t) = 一㈣삭-乙以。«)一術 t)+p 低 i)

_ g J*知展渺底一后一知)$X (£b i) SX (£2, t) (21) 

by introducing the Fourier transform as follows:

折"谖•구f(Rt) (22a)

W—济J诚 e(* ? (22b)

The solution of eq. (20a) can be written as

X° (t)=X0(O)e아〔1—§X。。) (1—e")〕T (23)

Here we assume the following Gaussian condition
VbX(KO) v (£j)>=0 (24)

V$X (& SX & tj …&、)> = 0 if n is an odd 
integer, sum over 
all the possible pair 
products if n is 
an even integer.

Now we define a time correlation function as

= (25)
We first consider eq. (21) neglecting the nonlinear term. Using 
the condition, eq. (24), the time correlation function is given by 

G° (3 =

(£, oy > • exp (尸 + 空} (26)

At a stable steady state the correlation function is
G。當X&oy> exp{—」D (『+£"”} (27)

where f is the time-independent correlation length defined as 

&T=*(2gX；,-a)=3 (28)

If we consider the time-dependent X° (t) given by eq. (23), the 
time-dependent correlation function is

G‘ (确)= <SX(E,O)，> • exp \-D〔尸(tL用 (29)

where the time-dependent correlation length, f(t), is defined as

As time goes to infinity, the time-dependent correlation length 
is equal to 아re time-independent correlation length. Next, we 
consider the effect of nonlinearity on the correlation function. 
Using the condition, eq. (24), the time correlation function is 
derived in the following way:

Multiplying eq. (21) by dX (k, O) and averaging it, 
we obtain

으罚X(£, WX(E0)> = —〔眼+2gx。
«

yx(£, t) ax(£, o)> —f~, fdk,威e

x<$X(fut) TX(政 t)bX(KO)〉 (31)

If X° (t) has the steady state value, the solution of eq. (21) is 
given by

6X(£") = SX (£, 0)exp〔一D (蚪+ £ Ft ]

+ / 자(K")exp〔一D ("+£")(―尸)〕“

一「(壬M 허"x"—")"一”)〕

X JdR心(£-A,-A2) SX (后

三技0(3)+"£\偉，i) (32)

where each term is defined as

"爲低 i) = Q【低0)exp〔一D仃+£")£〕

+ [ V (代尸)exp〔一D(虹+D (32a)

ML (£, " = _{£)J d/zexp(—O (虹+D (tT)〕

x jd如心倡一&一灼)sx (后,r)sx (政 r)(32b) 

From eq. (31) the time correlation function is given by
G & t、)=〈aX (£, 0)2〉exp{—£)〔&+&： (t)#} (33)

where the correlation length with the nonlinear effect, f fi(t)f 
is defined as

H,(t)=r，+^~<SXi(0.t)> (34)06 n u
with? given by eq. (28). As time goes to infinity, the value of 
<dX】(O, t)> becomes finite. That is,

(0,i)> 一Y은村. (35)

Therefore, the above correlation length in the long time limit 
is given by

艷—苛新 (36)

As 아iown in the above result, the correlation length with the 
nonlinear effect is larger than the corr이ation length obtained 
with the linear approximation.

If we consider the time dependence of X° (t), the solution 
of eq. (21) is given by

&X t) = aX (& 0) exp <—J [Dk，+2gX° (t,) 一 a〕dt‘}

+£ 1 低 t')exp{-/"〔Z*+2，6X。做)一a〕dt"}df 

一-法H’dt'exp {-£如+2QX。")一a"} 

x啊話1以(£—£,—£,) aX (后,t') sX (£,, t')

淘 xm,t)+<yx：(£,t) (37)

where each term is defined simila미y as in eq. (32). From eq.
(31) the corresponding correlation function is given by

G(£, t) = <sX(£,0)，>exp{—D〔Z+*W)〕汀(38) 

where the correlation length,队(t), with the nonlinear effect 
and the general time-dependent X° (t) is defined as '

M (t) = L (t) + -꾮广、QX： (0,t) > (39)

with J(t) given by eq. (30). Near the stable steady state the con
tribution of <dX； (O, t)> to the correlation length is finite;

虾以(。3)>—芹으;). (40)

So, the above correlation length near the stable steady state is 
given by
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") = L(〃--終卞 (41)

and at the stable steady state this correlation length is equal to 
<R(t).

Discussion

In the first part of this work we have obtained an approx
imate solution P (X, t) to the Fokker-Planck equation with the 
nonlinear drift term due to a Schldgl model in terms of the func
tion G (X, t) which is a functional of X and t. This solution 
may be compared with the recently proposed Suzuki's solution. 
That is, the solution obtained after the first-order decoupling 
of the exponential operator in Suzuki's unified theory11 is ex
actly equal to ours. This distribution function P (X, t) does not 
describe the approach to the final stable steady state properly. 
The reason why the present probability distribution function 
does not approach to the final steady state distribution func
tion given by eq. (14) is that our approximate method of solu
tion is based on the scaling theory of Suzuki. At present no exact 
solution to the nonlinear Fokker-Planck equation is available 
and the best approximate solution to date is based on the scal
ing theory or at best some modification of it. Since the scaling 
theory is dealing with the initial and intermediate regimes and 
the description of the passage to the final regime is only at the 
formal and still approximate level.11 12 However, the second 
moment approaches the final steady state value in the long time 
limit. Some attempts have been made to resolve this problem 
but it seems rather difficult and more vigorous study is needed.

Secondly, we have obtained several correlation lengths at the 
stable steady state and we conclude that the correlation length 
with the effect of nonlinearity is larger than the correlation 
length considering the linear term only.

Appendix

We obtained eq. (16) with the following form

<x(i)l>-〔* ]히'飞一厂으---- ]1 ■
心)人 1+§(1-Z)G

*。乂卩〔-矗产.
Transforming G2/D (t) into u\ we have

D(t)「Wb • exp (—— )dt*
兀 jo 1+Bu L

(Al)

(A2)

where

a

In the above eq. (A2) the integrated part is divided into two 
parts.

J]1亍奇' , = (加 느記

广 1
Jq 1 + BuX (A3)

The first term on the rhs is easily integrable and the second term 
is given by14.

J「讦느 Z 허，一叢 矗〔/匸厂有 尹,(矗)〕

(A4) 
where E, (X) is the exponential integral function which is defined 
as14

8 Xn
E,(X) = 7+ln X+ E——,(X>0, 7=0.5771). (A5) n=\ n n I

Using the above definition, eq. (A2) can be written as

<X (t 尸 > =£一焉• e-寿｛7茹 e 财 _(矗｝ 

+ 4' (蠢뉴 ｛、矿吧财-扣 矗)｝

•矗七스七蓦 "，湍矗方 网
where

a

As time goes to infinity, B also goes to infinity and only the 
first term on the rhs of eq. (A6) survives.
From this fact we can have

m<X(，)‘> (A7)
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