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When a molecule is perturbed by an external fied, the perturbed moecue can be described as a douby perturbed system. Hartree- 

Fock operator in the absence of the field is the zeroth order Hamiltonian, and a correlation operator and the external fi리d 
operator are perturbations. The effective Hamiltonian, which is a projection of the total Hamiltonian onto a small finite sub- 
sPace (usually a valence space), has been formally derived. The influence of the external field to the molecular Hamiltonian itself 
has been examined within an effective Hamiltonian framework. The first order effective expectation values, for instance elec­
tromagnetic transition amplitudes, between valence states are found to be easily calculated — by simply taking matrix elements 
of the effective external field operator. Implications of the terms in perturbation expansion are discussed.

1. Introduction

When a molecule is perturbed by an external field, various 

phenomena will be observed, for instance, Zeeman effect or 

Stark effect. Needless to say, it is important and interesting to 

understand such phenomena. Also when so called properties 

of molecules are desired, the property operator should be add­

ed to the molecular Hamiltonian like the external perturbation. 

Consequently, the perturbation method can be utilized to solve 

the problem. In the perturbation framework, the perturbed 

molecule is regarded as a doubly perturbed system. Since it is 

impossible to solve the molecular Hamiltonian (Hartree-Fock 

plus correlation operator) exactly, it is practical to consider the 

Hartree-Fock operator as the zeroth order part, and correla­

tion and external field operators as two perturbations.

From the Kelly's initiative work to Bartletfs many-body per­

turbation approach1-6, double perturbation problems have long 

been studied. However it still is a challenging problem as far 

as the convergence and efficiency of theoretical treatments are 

concerned. The difficulties in double perturbation method arise 

from, of course, the fact that there are two perturbations. 

Therefore the perturbation expansion is very complicated so that 

it is a formidable task to locate dominant terms.

In the present work we have the so called first order proper­

ties between molecular valence states in mind. The first order 

properties are expectation values of property operators trun­

cated at the first order in perturbation expansion. Examples are 

dipole moments and oscillator strengths, etc. From now on we 

treat the property operator relating to properties of molecules 

as the second perturbation. Particularly we are interested in the 

effective property operator that spans only within a valence 

space and, therefore, describes the valence state properties.

Recently the ab initio effective Hamiltonian method for an 

isolated molecular system has been developed.7-14 And the ef­

fective Hamiltonian has been extensively applied to various 

atomic and molecular systems.15-19 Absolute energies, conse­

quently excitation energies and various spectroscopic constants 

have been reported. Those applications confirm that the effec­

tive Hamiltonian itself is either a well formulated method or 

another good ab initio method for describing molecular elec­

tronic structures. However, to our knowledge, ab initio effec­

tive Hamiltonian for molecular properties has not been 

formulated yet. Only Brandow showed that any effective pro­

perty operator can be obtained in terms of well-defined pertur­

bation expansion.12

We derive a formal expression for an effective Hamiltonian 

which has the second perturbation of property operator. The 

derivation shows how the double perturbation manifests in an 

effective Hamiltonian. Next a simple first order (with repect 

to the property) effective Hamiltonian is obtained. From the 

comparison of the first order effective Hamiltonian with the 

exact one, we find that perturbation expressions for the first 

order molecular properties can be easily obtained. The 

diagramatic perturbation expansion technique may be usef너 

for resumming expansion terms so that more practical (easily 

tractate in numerical calculations) expressions could be ob­

tained.

Section 2 describes the doubly perturbed Hamiltonian and 

shows how the whole Hamiltonian can be transformed into an 

effective valence Hamiltonian. First order approximation with 

respect to property operator has been invoked to obtain a simple 

effective property operator in section 3. In section 4, com­

parisons of the exact and the first order effective Hamiltonian 

are provided. Explanation on relevant terms are also given in 

section 4. Section 5 summarizes the derivation and the mean­

ings of the effective Hamiltonian of doubly perturbed systems.

2. Exact Effective Hamiltonian, H 必

When an arbitrary operator, A/is added to an molecular elec­

tronic Hamiltonian, H°, the whole Hamiltonian> His given as

,+ AA/ ⑴

where A is an expansion index. We call M a property operator 

throughout the paper. Then the full Schrodinger equation is

Hq—Ep (2)

where E is the total energy of H.

Let us assume that the H° be exactly solved. is the zeroth 

order part and Af is a perturbation when Af is small. We pro­

ject the whole Hamiltonian, Honto a small subspace A Q space 

is the complimentary to it. The whole wavefunction, W can be 

represented as a linear superposition of some functions, G of 

which are eigenfunctions of i.e.t

虹 ECe (3) 
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we utilize a matrix representation where Cp designates the col­

umn vectors of C for ZeP and CQ for those JeQ. The 

Schrodinger equation (2) can then be expressed in supermatrix 

form as

where &叫 = ＜씨可 饱 '〉for /, z' GP, denotes the sub-block of 

the Hamiltonian matrix within P space, £猊 = ＜씨시for 

zGP, j£Q, that between P and Q, etc. E is a diagonal matrix 

of the total energy. Equation (4) can be rewritten as

HPp Cp+Hpg Cg=Epp CP (5)

Hqp Cp+Hg Cq=EQq Cq ⑹

where EPP is a diagonal energy matrix within P space and E아q 
within Q space. From equation (6), we obtain

C Q= (E QQ— H QQ)QpC p ⑺

Substituting equation (6) into euqation (5) gives

HeyyCp~ [Hpp+HPQ (EQQ—HQQ) ~lHQp'jCP=EPPCP (8)

The H或 is an effective operator of H, which acts only within 

a small and finite P space. Inserting equation (1) into equation 

(8), we readily find an expression for H", ie,

He^= + pp+ “ (Eqq-H"人Mg)-1

x(H° + AM)qp (9)

Since M is usually very small compared with the electronic 

energy part H°, the denominator in equation (9) can be expanded 

as

(E QQ~ H'qq— AA/qq) 1
=[1OQ— A (Eql H%q) ~lMqq〕t (Eg — Hqq) 1

=〔1qq+ 人(Eg— ~lM Ofl+ £ 人"
n=2

{(EqlH.)시 (10)

where 1QQ is a unit matrix within Q space. MPP is a sub-block 

of M matrix within P space, etc.

Substituting equation (10) into equation (9) and expanding 

the term in we easily find the second order expression for 

H”, ie,

HH知+H% (Eqq-H肅-农膈

+ A〔MFf+M pq (Eg— ~1Hqp

(E 이？-H%)-IM 时 (E“ - H*) TH；』

+ M PQ (E QQ — -1Af QQ (E QQ-~ Hqq)
+% (Eg- %)-lMQQ (E“-H\q) w가,

+ H；q (JEqq—Hqq) ~XM qq (E qq- Hqo) ~'M qq (E qq — Hqq) 指

+ o(b) (11)

When we consider only the first order properties, the expan­

sion is truncated at the A-term. As shown in equation (11), the 

H린Es the total energy (£) dependent, which makes evaluation 

of 的 cumbersome and difficult.

3. Effective Property Operator, M 必

The molecular electronic Hamiltonian, H° in equation (1) can 

not be solved exactly. Therefore H° could be solved with a per­

turbation method. As H$하 is the zeroth order part and V is 

a perturbation, can be written as
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H°=HSCF+V (12)

Hscf is usually a one-electron Hartree-Fock Hamiltonian and 

Kis a correlation operator. The Schrodinger equation is then

H° 0°=E° (13)

where is expressed in linear combinations of electronic deter- 

minantal wavefunctions, $°. That is

"=£ (14)
teP jeQ

P and Q have the same meaning as those in equation (3). The 

energy is a molecular energy when external (property) 

operator M is absent. In supermatrix form, equation (13) again 

can be rewritten as

严"％)=玲3) (15)

3膈 H诚 \C°QJ

Adopting the same projection operator formalism, eff 

which is the effective Hamiltonian of H° within P space can 

be expressed as

HaeffC°P=爲+H 良膈〕= E 膈C； (16)

When a molecule is perturbed by a weak field M, A/becomes 

another perturbation besides the correlation V, The first order 

(with respect to M) property involving the states 阴 and W； is, 

under the first order approximation, %어We will call the 

expectation value "property integral". Since the zeroth order 

wavefunctions,

步,。=C 京，+ C 云， (17)

the property integral can be written as

奶十说邯=(C，+CL»M(C，+CL)

+C應MC；"+C睛 MC, (18)

Similarly to equation (7), we know that

C；= (E命-H膈尸H膈(耳 (19)

Substituting equation (19) into equation (18) gives

M。〃三 Mpp+M“ — -如p

+ 成‘Q (E\q - H%q) ~lM QP

+H°pq (E\q-H肅"M” (E膈 -H膈)W， (20)

and

W 十 (21)

As 아iown in equation (20), M必 is independent of the total 

energy E. It rather depends on the zeroth order energy E° under 

the first order approximation.

4・ Comparison of H9/f with

The in equation (11) is dependent on the total energy 

£. To obtain E-independent W from H히7, we expand the 

denominator in equation (11). We define

E=E°+A£z (22)

where E' is perturbation value due to the operator, M. Assum­

ing that E' be much smaller than E°,

(E；q+人E命-H為)-'

=(E*-H；Q)7〔lg+E (-人)(23)

We take the zeroth and first order part from in equation 

(11) and substitute equation (23) into equation (11). The results 

are then
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(E私—H膈)TH命〉

-AH；a (E*-H«a)-'E^ (E*- H膈)W膈

+ 人［MPp-\~MPQ (Eqq-~Hqq) (EqQ — Hqq)
+H為(E私-*) TMg (E；q - H输"H膈〕

+ 0(人후) (24)

Recollecting equations (16) and (20), we find that

"〃=h。■ "，+ 人湖£〃_ (EL-H膈)~lE^ (E%_ H%) -lH°P

(25) 

Equation (25) is valid under the first order approximation. 

Operator M does not appear in the last term of equation (25). 

It means that the term is independent of M. Actually it only 

shifts the molecular energy level in the presence of M. Note that 

the first order energy can be evaluated with the zeroth order 

wavefunctions, C?. Consequently the first order effective 

Hamiltonian within P space is

C爲H"气當(26) 

In another words, the property integral is identified as

This reduced form is identical with the first order 

given in equation (21). It implicitly means that the evalua­

tion of first order properties can be performed by slightly alter­

ing perturbation expansion diagrams for equation (15).

The Mpp term in equation (24) is identified as the effective 

operator at Hartree-Fock level. The following three terms are 

effective property operators when a correlation is included. In 

Bartlett et al.*s many-body perturbation approach,6 they treat 

the M as the first perturbation. That is, the M operator is in­

cluded into = FF**m. K is the second perturbation. The 

present analysis implicitly shows that their approach minimize 

the energy-shift term (last term in equation (25)). Therefore, 

complexities arising from the presence of both correlation and 

property operator are nicely avoided.10

At this moment we should point out a practical validity of 

equation (26). To evaluate the first order property with repect 

to M、it is not necessary to know the exact Cp. Instead, a 

knowledge on C? is sufficiently enough. However at least first 

order correction to Cp (or corresponding second order correc­

tion to property operator) is necessary to evaluate the second 

order property integrals. The perturbation expansion of Cp is 

interesting to study.

Another problem is how to obtain the unperturbed wavefunc­

tions, i.e., CJ. As mentioned before it is impossible to deter­

mine exact C；. Only approximate CJ can be obtained via, say, 

perturbation expansion truncated at a certain order. It is not 

surely known that how much the use of truncated C°p (see equa­

tion (26)) affects the first order (with repect to M) properties. 

An approach of solving the problem is to use a diagramatic ex­

pansion method. Brandow13 showed that the effective proper­

ty integral, C；］M叱訂 can be determined exactly in the sense 

of effective matrix elements of Me/^ However, it should be fur­

ther studied whether the first order part of exact Heff (see equa­

tion (11)) can be approximated to the first order Hamiltonian 

(see equation (24)). It may be tentatively argued that diagrams 

which involve only one M operator are sufficient to determine 

one-electron properties (which means M is one-electron 

operator, for instance, dipole moment). Along the guideline, 

the diagramatic expansion technique should be studied in more 

detail.

5. Summary

It has been shown that theoretical investigation on molecular 

properties can be performed by using the double perturbation 

method. Furthermore the valence properties can be studied with 

the aid of the effective Hamiltoniam derived in this work. When 

the first order molecular properties are desired, a simple effec­

tive property operator, ATff can be adopted for the purpose. 

The Af'"is found to adequately consist of a Hartree-Fock level 

term and correlation terms.

Unlike the higher order properties, e.g. polarizability, etc., 

it has been found that the first order properties of a molecule, 

e.g. dipole moment, etc., can be easily evaluated by simply alter­

ing the perturbation diagrams for the unperturbed molecule. 

An extensive derivation of the practical form of effective 

operator is currently under way.
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