Research Report, The Institute of Industrial Technology, Kangweon Nat'l Univ., Korea, Vol. 5, 1985.

A Note on S-closed Space and RC-convergence.

Chun-Ho Han

S-closed 空間과 RC 收斂에 관하여

韓春 鎬*

<u>약</u>

Semi-open 을 기초로 하여 만들어진 S-closed 공간의 일반적인 성질을 살펴보고 S-closed 공간과 (maximum) filterbase 와의 관계를 조사하였다. 이를 바탕으로 regular closed 된 cover C, regular open set 인 族 C, rc-accumulation, (maximum) filterbase 에서의 關係를 살펴 보았다. Mapping theory 에서 almost-open almost-continuous map f 가 almost continuous 되는 것을 보였다.

I. Introduction

In this paper investigating the several new characterizations of S-closed spaces. These characterizations are based on semi-open in terms of a generalization of complete accumulation point. S-closed spaces can be characterized in terms of regular closed (rc) or regular open subsets of a space (X,T). And rc-convergence structure used to characterizations of S-closed space. And investigate almost-open almost-continuous map f is almost continuous.

I. Preliminaries

Let X be a space and $A \subset X$, $x \in X$, We denoted closure of A as \overline{A} , interior of A as A° , RC(X) denotes family of regular colsed subsets of X, SO(X) denotes family of semi-

open subset of X and O(A) denotes family of open subsets which contain A, and semiclosure of A denoted as SC(A) and θ -semiclosure of A as θ -sc(A).

Throughout this paper the topological space (X,T) denoted simply X and (Y,τ) denoted simply Y.

Def. 1) A sudset V of topological space is semi-open if and only if $V^{\circ} \subset V \subset \overline{V}$

Def. 2) A is regular closed if $A = \overline{A^0}$.

A is regular open if X-A is regular closed.

Def. 3) x is in the the semi-closure of A, if each $V \in SO(x)$ satisfies $\overline{V} \cap A \neq \phi$. A is θ -semiclosed if $A-\theta-sc(A)$.

Def. 4) A map $f: X \rightarrow Y$ is almost-open if for each $G \in RO(X)$, $f(G) \in \tau$. A map is almost-continuous if and only if for each $x \in X$ and open neighborhood V of f(x), there exists an open neighborhood G of x such that

^{*} 江原大學校 工科大學 土木工學科 助教授

^{*} Assistant Professor, Dep't of Civil Engineering, Kangweon National University.

 $f(G)\subset (\bar{V})^{\circ}$ in Y.

Following properties are easy to see from previous definitions. No proofs are given for next properties.

Prop. 1) A is semi-open if and only if $\overline{A} = \overline{A^{\circ}}$.

A is semi-open then \overline{A} is semi-open and $\overline{A} = (\overline{A})^{\circ} = (\overline{A^{\circ}})^{\circ}$.

Prop. 2) If $P \subset Q \subset X$ then $\theta - sc(P) \subset \theta - sc(P)$.

Prop. 3) If $A \in SO(X)$ then θ -sc(P) is θ -semiclosed for each $P \subset X$ since $\overline{A} \in SO(X)$.

Prop. 4) Since $RC(X) = \{\overline{V} : V \in SO(X)\}$, $x \in \theta$ -sc(A) if and only if each $R \in RC(X)$ satisfies $A \cap R \neq \phi$.

Prop. 5) A regular open subset of a space is θ -semiclosed.

Prop. 6) The following statements are equivalent for a function $\lambda: X \rightarrow Y$

- i) the function λ is θ -continuous.
- ii) for every $A \subset X$, $\lambda(\overline{A}) \subset \theta$ -sc $(\lambda(A))$.
- iii) for every $A \subseteq Y$, $\lambda^{-1}(A) \subseteq \lambda^{-1}(\theta \operatorname{sc}(A))$.
- iv) for every θ -semiclosed $A \subset Y$, $\lambda^{-1}(A)$ is closed in X.
- v) for every $R \in RC(\lambda(x))$ there exists a $V \in O(x)$ with $\lambda(V) \subset R$.

M. Main Theorem

Thm. 1) For a topological space X the following are equivalent;

- i) X is S-closed.
- ii) For each family of semi-closed sets $\{Fa\}$ (i.e. each Fa is the complement of a semi-open set) such that $\bigcap Fa = \phi$, there exists a finite subfamily $\{Fa_i\}_{i=1}^n$ such that

 $\bigcap_{i=1}^{n} (Fa_i) = \phi_i$

- iii) Each filter base on X has an s-accumulate to some point in X.
 - iv) every maximum filterbase F s-converges

Proof)

i)—iv). Let $F = \{Aa\}$ be a maximum filterbase. Suppose that F does not s-converges to any point: therefore F does not s-accumulate to any point. Then for every $x \in X$, there exists a semi-open set V(x) containing x and an $Aa \in F$ such that $Aa \cap \overline{V(x)} = \phi$. Obviously $\{V(x) : x \in X\}$ is a semi-open cover for X and there exists a finite subfamily such that $\bigcap_{i=1}^n V(x_i) = x$. Since F is a filterbase, there exists an $A_o \in F$ such that $A_o \subset \bigcap_{i=1}^n Aa_i$. Hence $A \cap V(x_i) = \phi$, $1 \le i \le n$, which implies $A_o \cap (\bigcup_{i=1}^n V(x_i)) = A_o \cap X = \phi$. Contradicting the essential fact that $A_o \ne \phi$.

iv)→iii). Every filterbase is contained in a maximal filterbase.

iii) \rightarrow ii). Let $\{Fa\}$ be a collection of semiclosed sets such that $\bigcap Fa = \phi$. Suppose that for every finite subfamily, $\bigcap_{i=1}^{n} (Fa_i)^{\circ} = \phi$.

Therefore $F = \{ \bigcap_{i=1}^n (Fa_i^{\bullet}) : n \in \mathbb{Z}^+, Fa_i \in \{Fa\} \}$ forms a filterbase. From hypothesis, F s-accumulates to some point $x_0 \in X$. This implies that for every semi-open set $V(x_0)$ containing $x_0, Fa^{\bullet} \cap V(x_0) \neq \phi$, for every $a \in \Lambda$. Since $x_0 \in \cap Fa$ there exists an $a_0 \in \Lambda$. Since $x_0 \in Fa$. Hence X is contained in the semi-open set $X - Fa^{\bullet}$.

Therefore

 $(Fa_0)^{\circ} \cap (X - Fa_0) = (Fa_0)^{\circ} \cap (X - (Fa_0)_{\circ}) = \phi$, contradicting the fact that F s-accumulates to x.

ii) \rightarrow i). Let $\{Va\}$ be a semi-open covering X. Then $\bigcap (X-Va)=\phi$. By hypothesis, there exists a finite subfamily such that

$$\bigcap_{i=1}^{n} (X-Va_i)^{\circ} = \bigcap_{i=1}^{n} (X-Va_i) = \phi.$$

Therefore $\bigcap_{i=1}^{n} \overline{Va_i} = X$, and consequently X is S-closed.

Next theorem is easily given from Thm. 1)

Thm. 2) For a topological space X, the following statements are equivalent.

i) X is s-closed.

- ii) any cover C of X by regular-closed sets has a finite subcover.
- iii) any family C of regular open sets such that $\bigcap C = \phi$ contains finite $B \subset C$ such that $\bigcap B = \phi$.
- iv) every filterbase on X has an rc-accumulation point in X.
- v) every maximal filterbase on X rc-converges.

Proof

the result follows.

- i)→ii). Since regular closed sets included semi-open sets, this is obvious.
- ii) \rightarrow i). Assume X is not S-closed, then there exists a cover $C \subset SO(X)$ such that C has no finite proximate subcover. Thus $\{V: V \in C\} \subset RC(X)$ has no finite subcover. Thus the result follows from the contradiction. ii) \leftrightarrow iii). Since $RO(X) = \{X x: x \in RC(X)\}$,
- iv) ↔ v). A maximal filterbase rc-converges if and only if it rc-converges.
- v) \leftrightarrow i). Let a filterbase F s-converges to $x \in X$ and $R \in \{C(x)\}$. Then $R = \overline{G}_1 \cap \overline{G}_2 \cap \cdots \cap \overline{G}_n$ in X. Now for each \overline{G}_i in X. $F \in H$ such that $F \subset \cap \{F_i\} \subset R$. On the other hand, assume that H rc-converges to $x \in X$ and $V \in SO(X)$ such that $x \in V$ there exists an $F \in H$ such that $F \subset \overline{V}$ in X.

Corollary) The next two statements are equivalent;

- i) a filterbase on X rc-converges if and only if it θ -converges.
- ii) if a filterbase on X converges with respect to the topology T, then it rc-converges.
- Thm. 3) An almost-open almost-continuous map $f: X \rightarrow Y$ is almost-continuous.

Proof) Let $F \in RC(Y)$, then $f^{-1}(F) \in RC(X)$. Thus if $f(x) \in \overline{V}$ in Y for arbitrary $V \in \tau$, then $f^{-1}(V) = \overline{H}$, $H \in T$, V in Y, H in X. Consequently, $f^{-1}(\overline{V}) \in C(x)$. Hence $C(f(x)) \subset f(C(x))$ and the result follows.

References

- James E. Joseph and Myung H. Kwack, "On S-closed spaces". Proc. Amer. Math. Soc., Vol. 80, No. 2, pp. 341~348(1978).
- Robert A. Herrman, "RC-convergence", Proc. Amer. Math. Soc., Vol.75, No.2, pp. 311~317 (1979).
- H. Schubert, Topology, Allyn and Bacon, Inc., Boston (1968).
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston (1970).
- John L. Kelley, General Topology, D. Van Nostrand Company (1955).
- Stephen Willard, General Topolgy, Addison— Wesley Publishing Company (1970).