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Abstract

The tension leg platform (TLP) is a kind of compliant structures, and is also a type of
moored stable platform with a buoyancy exceeding the weight because of having tensioned
vertical anchor cables.

In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT)
TLP was analyzed because it has lafge-displacement portions of the immersed surface such as
vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also
has results of hydraulic model tests,: comparable with theorectical analysis. Because of the
vertical axes of symmetry in the three vertical buoyant legs and because there are no larger
horizontal buoyant members between these three vertical members, it was decided to develop a
numerical algorithm which would predict the dynamic response of the DOT TLP using the
previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for ver-
tically axisymmetric bodies of revolution.

In addition, a linearized hydroelastic,Morison equation subroutine would be developed to acco-
unt for the hydrodynamic pressure forces on the small member cross bracing.

Interaction between the large buoyant members or small member cross bracings is considered
to be negligible and is not included in the analysis.

The dynamic response of the DOT TLP in the surge mode is compared with the results of
the TLP algorithm for various combinations of diffraction and Morison forces and moments.
The results which include the Morison equation are better than the results for diffraction only.
‘This is because the vertically axisymmetric buoyant members are only marginally large enough
to consider diffractions effects. The prototype TLP results are expected to be more inertially

«dominated.

Generally speaking, floating vessels, such as

1. Introduction

The tension leg platform is a kind of com-
pliant structures, which, as its name implies,
are designed to move within excursion ampli-
tudes from an equilibrium position so that the
effects of the environmental load are mitigat-
ed,™® and is a type of moored stable platform
with a buoyancy exceeding the weight because
of having tensioned vertical anchor cables,

drill ship and a semisubmersible drilling rig,
experience more heave, pitch, and roll motions
as sea conditions become rougher and water
depths greater. However, the tension leg plat-
form, which is held firmly in place by vertical
anchor cables, results in less motion response
to heave, pitch and roll even in deep water.
Paulling and Horton®* developed a method
of predicting the TLP mations, using a linea-
rized hydrodynamic synthesis technique, i.e.
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the modified Morison’s equation®, which was
also used by Burke‘® in the analy:gis of motions
of semisubmersible drilling vessels in waves,
The details of Paulling’s method was also pre-
sented in Ref. (7) and(8).

Yashima had an interest in the experimental
and theorectical study of a TLP in deep water®
and Rainey indicated the dynamic instability
at critical wave frequencies and subharmonic
oscillations in cross seas®®. Rowe and Jackson
also experimented Mathieu instabilities on
TBP®Y, Ashford and Wood took numerical
integration of the motions of a TBP, neglecting
drag term of the Morison equation®®. Tana-
ka9® introduced diffraction force based on
McCamy-Fuchs’ theory®?, because, if vertical
pontoons of a TLP have a relatively large
diameter, diffraction effects must be taken into
consideration.

In this paper, among the various kinds of
tension leg structures, the DOT TLP shown in
Fig.' 1 was analyzed because it has large-
displacement portions of the immersed surface
such as vertical corner pontoons and small-
diameter elongated members such as cross-
bracing. It also has results of hydraulic model
tests, comparable with theorectical analysis.

This one-third scale model consists of a tri-
angular shaped deck with three vertically
axisymmetric circular cylinders at each corner
of the triangular shaped deck. Smaller diameter
circular cylinders connect each of these three
vertical buoyant legs. Because of the vertical
axes of symmetry in the three vertical legs
and because there are no larger horizontal
buovant members between these three vertical
members, it was decided to develop a numerical
algorithm which: would predict the dynamic
response of the DOT TLP using the previously
developed numerical algorithm FVRS for verti-
cally axisymmetric bodies of revolution16,17),
In addition, a linearized hydroelastic Morison
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Fig: 1. Definition Sketch for DOT TLP

equation subroutine will be:developed to account
for the hydrodynamic pressure forces on the
on the small member cross bracing {vide, Fig.
4}. This paper documents the thk:ory and logic
used to develop the TLP algorifhm using the
basic subroutines from the MARATHON FVRS
plus the newly developed subroutines for the
linearized hydroelastic Morison . equation. A
sample calculation and comparisdn with exper-
imental results from the DOT TLP are also
included.

2. Theoretical Modeling Assumptions

The TLP algorithm solves for the dynamic
response of a TLP having vertically axisym-
metric buoyant members and small member
cross bracing. The dynamic response of the
TLP in the global coordinate axes shown in
Fig. 2 is obtained by solving for the hydro-
dynamic pressure forces on each member in



local member coordinates and then transfor-
ming these local forces back into the global
coordinate axis by smiple coordinate transfor-
mations. Interaction between the large buoyant
members or small member cross bracings is
considered to be negligible and is not included
in the analysis.

3. Coordinate System

3.1. Global Platform Coordinate Axis

The global coordinate axis for a platform
having N vertically axisymmetric buoyant
members is shown in Fig. 2. The X,~—X; plane
lies parallel to the horizontal still water plane
with the vertical X, axis positive ‘up. Each
buoyantTmember is rigidly connected to the
platform deck. The origin of the global coor-
dinate axis {X;, X;, X3} is located at the plat-
form center of gravity {vide, Fig. 1}.

8. 2. Local Body Coordinate Axes

A local bedy coordinate system for each of
the N vertically axisymmetric buoyant body
is aligned parallel to the global coordinate
system with each of the axes origin located
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Fig. 2. Definition Sketch for Global, Local, and
Wave Coordinate Axes for N Buoyant
Diffraction Bodies

Fig. 3. Definition Sketch for Global, Local and
Wave Coordinate Axes for N Hydroelastic:
Morison Members

at the center of gravity for each axisymmetric
buoyant local body {vide, Fig. 2}. A local body
coordinate system for each of the N’hydroela-
stic Morison members is shown in Fig. 3. A
position vector R, defines the distance from
the global coordinate axes at the TLP center
of gravity to the nt* Jocal body coordinate axis
at the local body center of gravity for both
the vertically axisymmetric buoyant bodies.
and the hydreelastic Morison members accord-
ing to
RBo=X1a 81+ Xon 22+ Xan 85 )

3.3. Wave Coordinate Axis

Monochromatic, long-crested, linear waves
are assumed to be propagating without change
of form at a constant angle of attack, ¢, shown
in Fig. 3. Hydrodynamic interaction is negle-
cted between either the large vertically axi-
symmetric buovant diffraction bodies or the
hydroelastic- Morison member cross bracings.
Consequently, neither the scattered wave field
from the buoyant diffraction bodies nor the
shielding effect from the hydroelastic Morison
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member cross bracings are included in the
determination of the local hydrodynamic pre-
ssure forces. This assumption appears to be
experimentally justified by the DOT TLP data
comparisons.

3.4. Local to Global Coordinpte Transformati-
ons

The TLP is assumed to have six degﬁees of
freedom in dyhamic response to the waves;
viz., three translational medes {X;, X,, X} and
three rotational modes {Q,, 05, Q¢ {vide, Fig.
2}. The n* local body translational displace-
ments may be expressed in terms of the global
coordinates according to

X =X-R.xd
={z’,y5’, 2’} 2)
and the n** local rotational displacements by
Bo=0 3)

The velocity and acceleration of the = local
body are obtained from the temporal derivati-
ves of Egs. (2) and (3), respectively, ie.,

25 . -
505
We=8 (4b)
=X R X0 (52)
505
w,=8 (5b)

4. Forces and Moments

4.1. Hydrodynamic Pressure Forces on n%
Local Body

The hydrodynamic pressure forces on the ntt
local body due to long crested, linear waves
propagating at an angle, ¢, to fche global co-
ordinate axes are assumed to be linearly de-
composed into three separate component: viz.,
1) hydrostatic restoring force; 2) wave-induced
exciting ‘force on a fixed body; and 3) wave-
induced reacting ‘force on a body oscillating in
otherwise still water (wavemalker force). In
an earlier MARATHON report for the FVRS,
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it was shown .that for bodies having vertical
axes of symmetry, only three modes of rigid
body motion are possible {viz., 1) surge; 2)
heave; and 3) pitch}. Consequently, only these
three exciting and reacting forces will be com-
puted for each large buoyant diffraction body.
The provedure to be ubed to compute these
forces will be to compute. the hydrodynamic
pressure force for each vertical member in the
wave coordinate system and to then transform
these forces back to the global coordinate
system to solve for the dyhamic response of
the TLP. |
For the wave coordinate system shown. in
Fig. 2, the following exciting forces will be
computed
Fi»==horizontal surge exciting wave
force in wave:direction (6a)
Fy,*=vertical heave exciting wave
force (6b)
M,°=overturning pitching moment
about the axis perpendicular to
wave direction (€c)
The wave-induced exciting forces will then be
transformed back to the global coordinate axis
according to !
Fot={F* cosyy, Fy*, F\* sind}, (7a)
M= (My"cos ($+7/2), 0,
Mc®sin (f+7/2)} (7b)
The force and moment components are defined
in APPENDIX A. The wave will ke referenced
to the global coordinate axis by

rnrﬁn;z/ff ®)
where

k== {fecosf, 0, ksiny) (©)
provided that

o= (2 T)*=ghtanh kh (10)

The wave-induced exciting forces and mo-
ments computed by the MARATHON FVRS
algorithm are complex-valued coefficients expr-
essed by magnitude and phagets,16,17,

The complex-valued, wave-induced hydro-



dyhamic reacting forces are linearly decompo-
sed into an added mass and a radiation dam-
ping component. The added mass, F! and
radiation damping, F.?, components are given
by

@

-

3
F? Zl lnMij Qnj ey (112)
i=l j=
F,,D~ Z Nij th; e, (11b)
=] j=1
where
uni=511 xnl+aj2 yn‘+ 61‘3 Zn1+5,~4w,,4
485 Wns0js Wns (11c)
Qnj==thn; (11d)

and .M and ,N;; are the complex-valued
added mass and radiation damping components,
respectively, defined in APPENDIX B.

4.2. Body Force/Moment

The inertial body force, F,2, for the »** local
body in the local body coordinate is given by

F O3 12 Mpij Qnj el (12)
=171
in which
Maij= Z. 8yi O mu+2 {010 — leh’j”Inij
(13)

where m,=n'* local body mass; e;;=permuta-
tion symbol; and the moment of inertia is
defined by

6
=, B By || 22y dA (14)
=1

4.3. Hydrostatic Restoring Force/Moment

The hydrostatic restoring force/moment are

given by
3
FA—F ki Zu (152)
——) 6 6 ->
=% X ki 2 (15b)
i=4 j=

4.4. Mooring Restoring Force/Moment

The restoring force exerted by the tether

bundles on the TLP may be expressed by

Fanle kn: Xnj (163)
=
MM=3 k) Doy (16b)

4.5. Hydroelastic Morison Force/Moment

The small member cross bracings shown in
Fig. 1 do not lie in the diffraction force regime
as do the large vertically axisymmetric corner
members. Forces on these small members must
be computed by a linearized hydroelastic Mo-
rison equation. The coordihate system used for
the small member hydroelastic Morison force
is shown in Fig. 5.

By generalizing the one-dimensional form of
the Morison equation, the three-dimensional
form of the hydrodynamic force acting norm-
ally to the =»** hydroelastic Morison small

meinber element is given by
EFs=(C, ~1)pV(V -—xn)

+cDﬁA1 Vel (Vn~x,.) +pvv,.<17)

in which C,, Cp=inertia and drag coefficients,

- - =3 .
respectively; V., V,=local water particle acce-
leration and velocity normal to the member
at the center of the »** small member element,

505
respectively; z,, x,=motion-induced member
acceleration and velocity normal to the mem-
ber at the center of the »** small member
element, respectively; p=fluid mass density;
and V, A=volume and normal area projection
of the »n** small member element, respectively.
If we use the approximate relation

VX (Vo = | V| Ve2I VI X,
(18)
according to the equation (7,12) of the refe-
rence? then the equation (17) may be linearly
decomposed into a wave-induced exciting force
for a fixed body and a motion-induced reacting
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force on a body oscillating in other-wise still
water by

Fo=F—F} (192)

Y —% >
=CrnpV V,,+CDJE~A| Vil V.
Y — =
—(C,—1)pV X,,——zc,,.g-A |V, X,
{190)
‘The quadratic drag force term in the exciting

e i 4
force proportional to | V,| V, and the quadratic
viscous damping term in the reacting force

) - o L
proportional to | V,|X, are linearized by Four-

ier analysis according to

A V= Uexp(—iwt); j=1,2,3 (20a)

Va 1—0i%  —6u b
= ‘
. l Ve = =011 b1z 1 —013%

S 7 01 b, g 13,

where ¢y, 612 and 8y, are the directional cosines
of unit vector along the axis of the small
member element in the global coordinate where
Ung==A cos ¢ cos h kf expi o€,
Vig=A sin h kd exp i(cusn~_'”2£)
Woo=A sin ¢ cos k0 exp i wé,
and where '

Hgk
2w

d== Y, -d+h

A= sechkh

The corresponding hydrodynamic pressure mo-
ment induced on the global structure by Eq.
{18) on the #*" local member may be expressed
as

M =R, < F—R, X {F+FY} (22)

5. Equation of Motion for TLP

The preceding forces/moments on the N
individual buoyant diffraction members plus
the N’ individual segments of the hydrostatic
Morison mernber cross bracing are -assembled

Hoh BIW-19854 3 A

-
| Vil -2 X exp(—iwt); j=1,2,3(20b)
IXn!l

in which the complex valued coefficients U,;
and X,; are computed by Fourier analysis, ‘and
the suffix j stands for the j* direction of the
axis of the cartesian global ceordinate. Note
that only a unit velocity for the member is
used to linearize the quadratic viscous damping
term in Eq. (20b).

The water particle velocity vector, —I}:; not-
mal to the member at the center of the »*™*
small member element, is estimated from linear
wave theory kinematics by

—011 013 Uno ]
—@12 013 v Vo (21)
1—0:5° Wao -~

to give the dynamic equations of motion for
TLP in the global icoordinates according to

(R RPE P BY 1 E (Fa+FY)

+Fo— é{ FotS B (232)

n=1

S0 (Mo M2+ M5 MY+ M°

a=1

+ élﬁﬂx (B4 F ot FAFM
+Z§;IR,,>< (F14-F)

=% My+3 Rox P+ S B Ry (23h)

in which N=total number of large vertically
axisymmetric buoyant members and N’=total
number of small member elements.

6. Example Problem for DOT TLP and
Conclusion

Experimental response data recorded for the



DOT TLP were compared with the TLP algo-
rithm output. The 1 : 3 scale model DOT TLP
shown in Fig. 1 dimensionless numerals stand
for the number of members consists of three
vertically axisymmetric buoyant caissons loca-
ted at each apex of the triangular shaped deck
structure; 3 each exterior and interior horizon-
tal cross bracing members at base level and
main deck level; 3 vertical small member
columns; and 6 diagonal interior struts. Forces
and moments on the three vertically axisym-
metric buoyant caissons were computed by the
Green’s function diffraction method using the
MARATHON FVRS algorithm; whilé the forces
and moments on all of the remaining small
members were computed by the linearized
hydroelastic Morison equation method.

The discretization scheme used to compute
the forces/moments on the DOT TLP is shown
in Fig. 4. Each vertically axisymmetric buo-
yant pontoon was discretized into eight nodal
points beginning at the submetged center line
of the vertically axisymmetric member (0, —
42.6) and ending at the still water level (5. 25,
0). For identical vertically axisymmetric buo-
yant caissons, only the nodal points for one
of the identical caissons must be input into
the TLP algorithm. The algorithm automati-
cally transforms each of the forces and mo-
ments for identical vertical axisymmetric
caissons into the global C.G. using the global
coordinates of each local body C.G: Each of
the three horizontal exterior cross bracing
members were discretized into ten equal segm-
ents for analysis by the linearized hydroelastic
Morison equation (vide, Fig. 4). Each of the
three vertical small member columns and each
of the six diagonal small member intérior struts
were discretized into five equal segments for
analysis by the linearized hydroelastic Morison

equation (vide, Fig. 4).
A flow chart of the TLP algorithm and the

_28;__

W

(5.25,0)

16.25,-10,625)

L.-42.6) " 1500.0)
[1.75.42.6) “

PROGRAN I('Q ELOM SHART

MAIN PROGRAM

1. REAC general input data for tre global system of the
TLP anc vave data

2. WRITE evarescent mode eigervalues

3. READ {nput data of the ‘local axisymmetric buoyant
merbers” (¢iffraction regime
tondimensinalize quantities

ng force coefficients for

S

5. Conpute hydrestatie res
axisymfetric buoyant me;
6. Compute phase shift due to spatial separation ofmembers
7. REMD fngus data, for the small members (Morison regime)
8. ij\?f)zn:‘;1e qi}?'o'aﬁ eouations of metion for TLP with six
corees of

X
[T

Computes prepagating mode eigenvalue
—

i WL 1

%Co'mutes evanescent mode eﬁqevt\/ﬂuesJ

)

Fesee

Computes spring constants for the TUP tethers

HYGYN

ing and restoring

Computes
] vaps members

feree con

{3) WRITE glosel structural deta and wave data {echc input)

73 %)

ey vaiued force ccefficient for axisymmetric
\

C.G. courdirates and tether spring constarts
J

SuN |

.

ved hydradynzmic force coefficients

J

resporse of TLF with € degreds of frezdon

e
: ous 6 N
i : t
{MALTE cutsut of the dynemic respc:sej

*

Fig. 5.

primary SUBROUTINES HYDYN, MORISON
and SLMEQ are provided (vide, Fig. 5).

The dynamic response of the DOT TLP in
the surge mode is compared in Fig. 6 with the

resilts of the TLP algorithm for various com-
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Fig. 6. Surge Spectrum for DOT TLP

binations of diffraction and Morison' forces and
moments. The results which inclide the Mor-
ison equation are better than the results for
diffraction only. This is because the vertically
axisymmetric buoyant me?mhers are only mar-
ginally large enough to consider diffraction
effects. The prototype TLP results are expected
to be more inertially dominated. The five fre-
quencies used to compite the surge mode RAO
in Fig. 6 were taken from the DOT WAVE-2
spectrum for 0° angle of attack in the global

coordinate axis.
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Appendix A : Wave-Induced Exciting Force/Moment

The wave-induced hydropynamic exciting force/
moment on each buoyant vertically axisymmetric
body is computed by the axisymmetric Green’s
function method described in Refs. 15) and 17) Each
force/moment must bé transformed from the local
body coordinate system to the global TLP coordinate
system.

First, the wave is referenced to the global coor-

dinate system according to the spatial phase angle

— —
Ta=k+Rufc (A-1)
The translational force components in Eq, (7a)
for the =»'™ vertically axisymmetric buoyant body
in the local coordinate system are given by
Fr*|Cilaoghs*(koh) (F/2b2) cOs {o (2 —7a)n—E1}
(A-2)
Fo* | C, | npghs® (Roh) (H/2b) sin {o (2 —a)n—E}
(A-3)
in which C;=complex-valued exciting force coefficient
for the :** mode computed by the axisymmetric
Green’s function method. The exciting moment
component in Eq. (Yb) is given by
M| Cs| npghet (ko) (H/284) 008 {o (£~ 72)n— s}
(A-4)
in which Cs=complex-valued exciting moment coe-
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ficient ' for pitch computed by the axisymmetric:

Green's function method.

Appendix B : Wave-Induced Reacting Force/Moment

The wave-induced hydrodynamic reacting force/
moment on each vertically axisymmetric body is
computed by the axisymmetric Green’s function
method described in Refs 15) and 17) Each force/
moment is transformed from the local body coordin-
ate system to the global TLP coordinate system as.
described in Appendix A.

The dimensional added mass, M:;, and radiation
damping coeffcients, Ni;, for the nth body are defined
from the dimensionless complex-valued coefficients.
(C:;) computed by the MARATHON FVRS algorithm

according to

oMy = w M= (pb.*)Real{Cn} (B-1)
wMaz= (pba®) Real {Cp} (B-2)
wMis=nMs1= (pb*)Real {Cis} (B-3)
nM15=nM51=nMu=nM41=nM12==nM21

= Mig= oM =0 (B-4)
Mg = nMaz==nMae= Mo =nMzs=uMss

=pMe=nMs2=0 (B-5)-
aMyy=n M= (pb.)Real {Cy,} (B-6)
wMya=nMss = (pb5)Real {Cgs} (B-7)
wMss=0 (B-8)

Appendix C: Tether Bundle Stiffness, k.;

The tether bundle stiffness, k.; given in Egs. (16}
are determined from the initial tether tensions and
the direction cosines, 6, for the static offset from a.
vertical equilibrium position. Assuming that each
individual tether bundle is connected to the nth buo-
yant axisymmetric caisson at its center of gravity,
C.G., the stiffness matrix is given by

K,.f-—-é{%&f‘i‘(-z%— ***%22“-)5-'5’1} (C-1»
in which A=total cross-sectional area of the tether
bundle; E=modulus of elasticity of tether material;
L=total static length of tether bundle; and Tp=static
tension of tether bundle. Note that there are no
for the rotational degrees of

stiffness elements

freedom.
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