ANTI-ININVARIANT SUBMANIFOLDS OF LOCALLY CONFORMAL KÄHLER SPACE FORMS

Dedicated to Professor Chin Myung Chung on his sixtieth birthday

U-HANG KI AND JIN SUK PAK

The Hopf manifold is a typical example of a locally conformal Kähler manifold which admits no Kähler metric ([4]).

In this paper, we shall study anti-invànariant submanifolds of locally conformal Kähler manifolds and mainly prove the following theorems:

THEOREM 1. Let \(N^n \) be an \(n(>3) \)-dimensional anti-invariant submanifold of a locally conformal Kähler space form \(M^{2n}(H) \). If the associated vector field of the Lee form tangents to \(N^n \) and if the second fundamental tensors commute, then \(N^n \) is a conformally flat space.

THEOREM 2. Let \(N^n \) be an \(n(>3) \)-dimensional anti-invariant submanifold of a locally conformal Kähler space form \(M^{2n}(H) \) such that the associated vector field of the Lee form is normal to \(N^n \). If the second fundamental tensors commute, then \(N^n \) is a conformally flat space.

THEOREM 3. Let \(N^m \) be an \(m(>3) \)-dimensional anti-invariant submanifold of a locally conformal Kähler space form \(M^{2n}(H) \). If \(N^m \) is totally umbilical, then \(N^m \) is a conformally flat space.

1. Preliminaries

Let \(M^{2n}(F_{\mu}^4, g_{\mu}, \alpha_{\mu}) \) be an \(2n \)-dimensional locally conformal Kähler manifold (an l.c.k-manifold). By its definition, at any point there exists a neighborhood in which a conformal metric \(g^e = e^{-2\rho} g \) is Kählerian, that is, \(\nabla^*(e^{-2\rho} F_\alpha^\mu) = 0 \), \(d\rho = \alpha \), where \(\nabla^* \) denotes the covariant

Received December 20, 1984.
differentiation with respect to g^\ast.

It is well known (cf. [1]) that a Hermitian manifold $M^{2n}(F_\mu, g_{\mu\lambda})$ is a l. c. k-manifold if and only if there exists a global 1-form α satisfying

\begin{align}
V_\nu F_{\mu\lambda} &= -\beta_\mu g_{\nu\lambda} + \beta_\lambda g_{\nu\mu} - \alpha_\mu F_{\nu\lambda} + \alpha_\lambda F_{\nu\mu}, \\
V_\mu \alpha_\lambda &= V_\lambda \alpha_\mu, \\
\beta_\lambda &= -\alpha_\mu F_{\lambda\mu}.
\end{align}

It is called a 1-form α the Lee form.

An l. c. k-manifold is called an l. c. k-space form if it has a constant holomorphic sectional curvature H. Then the Riemannian curvature tensor $R_{\mu\nu\rho\lambda}$ of an l. c. k-space form $M^{2n}(H)$ with constant holomorphic sectional curvature H is given by (cf. [1])

\begin{align}
4R_{\mu\nu\rho\lambda} &= H (g_{\alpha\beta} g_{\nu\lambda} - g_{\alpha\rho} g_{\nu\lambda} + F_{\alpha\beta} F_{\nu\lambda} - F_{\alpha\rho} F_{\nu\lambda} - 2 F_{\alpha\nu} F_{\rho\lambda}) \\
&\quad + 3 (P_{\alpha\beta} g_{\nu\lambda} - P_{\alpha\rho} g_{\nu\lambda} + g_{\alpha\lambda} P_{\nu\beta} - g_{\alpha\rho} P_{\nu\beta}) - P_{\nu\beta} F_{\rho\lambda} \\
&\quad + P_{\alpha\lambda} F_{\nu\beta} - F_{\alpha\lambda} P_{\nu\beta} + F_{\alpha\beta} P_{\nu\lambda} - P_{\alpha\beta} F_{\nu\lambda} + 2 (P_{\nu\beta} F_{\rho\lambda} + F_{\nu\beta} F_{\rho\lambda}),
\end{align}

where

\begin{align}
P_{\mu\lambda} &= -V_\mu \alpha_\lambda - \alpha_\mu \alpha_\lambda + \frac{1}{2} \|\alpha\|^2 g_{\mu\lambda}, \\
P_{\mu\lambda} &= -P_{\mu\lambda} F_{\alpha\beta}.
\end{align}

2. Anti-invavitant submanifolds of l. c. k-manifolds

Let N^m be an m-dimensional manifold immersed in a $2n$-dimensional l. c. k-manifold $M^{2n}(F_\mu, g_{\mu\lambda}, \alpha_\lambda)$. Since the discussion is local, we may assume, if it is necessary, that N^m is imbeded in M^{2n}. If the manifold M^{2n} is covered by a system of coordinate neighborhood $\{\mathcal{U}, y^i\}$ and N^m is covered by a system of coordinate neighborhoods $\{U, x^i\}$, where, here and in the sequel the indices $\kappa, \nu, \mu, \lambda, \ldots; k, j, i, h, \ldots$ run over the range $\{1, 2, \ldots, 2n\}$; $\{1, 2, \ldots, m\}$ respectively, then the submanifold N^m can be represented by $y^i = y^i(x^i)$. Here and in the sequel we identify vector fields in N^m with the images under the differential mapping.

We put

\begin{align}
B_i \equiv \partial_i y^k \quad (\partial_i = \partial / \partial x^i)
\end{align}

and denote by C_j $2n-m$ mutually orthogonal unit vectors normal to N^m, where here and in the sequel the indices x, y, z, \ldots run over the range $\{1, 2, \ldots, 2n-m\}$. Then the metric tensor g_{ij} of N^m and that of
normal bundle are respectively given by
\[g_{ji} = g_{\mu \lambda} B_{ji}^{\mu \lambda}, \quad g_{yx} = g_{\mu \lambda} C_{yx}^{\mu \lambda}, \]
where \(B_{ji}^{\mu \lambda} = B_{j}^{\mu} B_{i}^{\lambda} \) and \(C_{yx}^{\mu \lambda} = C_{y}^{\mu} C_{x}^{\lambda}. \)

If the transform by \(F_{x}^{i} \) of any vector tangent to \(N^{m} \) is orthogonal to \(N^{n} \), we say that the submanifold \(N^{m} \) is anti-invariant in \(M^{2n} \). Since the rank of \(F_{x}^{i} \) is \(2n \), we have \(m \leq n \).

For an anti-invariant submanifold \(N^{m} \) in \(M^{2n} \), we have equations of the form
\begin{align*}
(2.2) & \\ (2.3) & \\ (2.4) & \\ (2.5)
\end{align*}
where \(B_{ij}^{\lambda} = B_{j}^{\mu} g_{\mu \lambda} \) and \(C_{x}^{\lambda} = C_{y}^{\mu} g_{\mu \lambda}. \)

Using \(F_{\mu \lambda} = -F_{\lambda \mu}, F_{\mu \lambda} = F_{x}^{\epsilon} g_{x}, \) we have from (2.2) and (2.3),
\begin{align*}
(2.6)
\end{align*}
where \(f_{ij} = f_{i} g_{xy}, f_{yi} = f_{y} g_{ji} \) and \(f_{yx} = f_{y} g_{xz}. \)

Applying \(F \) to (2.2)-(2.5) and using (1.3) and these equations, we find
\begin{align*}
(2.7)
\end{align*}
Differentiating (2.2)-(2.4) covariantly along \(N^{m} \) and using (1.1), (1.2), (1.3), (2.7), equations of Gauss
\begin{align*}
(2.8)
\end{align*}
and those of Weingarten
\begin{align*}
(2.9)
\end{align*}
where \(V_{j} \) denotes the operator of covariant differentiation along \(N^{m} \) and \(h_{ji}^{x} \) and \(h_{j}^{i} = h_{j}^{x} g^{x} g_{xy}, (g^{x}) = (g_{x})^{-1}, \) are the second fundamental tensors of \(N^{m} \) with respect to the normals \(C_{x}^{\epsilon} \), we find
\begin{align*}
(2.10)
\end{align*}
where \(\alpha^i = \alpha_j g^{ji} \), \(\beta^i = \beta_j g^{ji} \), \(\alpha^z = \alpha_x g^{zx} \) and \(\beta^z = \beta_x g^{zx} \).

On the other hand, the equations of Gauss, Codazzi and Ricci are respectively given by

(2.11) \[R_{kjih} = R_{jipq} B_{kji}^{pq} + h_k h_i h_j h_i - h_i h_k h_j h_i, \]
(2.12) \[R_{jipq} B_{kji}^{pq} C_{ij}^k = V_{kji} - V_{jik}, \]
(2.13) \[R_{kjyx} = R_{jipa} B_{kjx}^{ipa} C_{xy}^k - (h_k^{ij} h_{jix} - h_j^{ij} h_{kix}), \]

where \(R_{kjih} \) and \(R_{kjyx} \) are covariant components of the curvature tensors of \(N^m \) and the normal bundle respectively, \(B_{kji}^{pq} = B^w_{kj} B^u_{ji} B^v_x \) and \(B_{kjx}^{ipa} = B^w_{kj} B^u_{ji} B^v_x \).

Let \(N^m \) be an anti-invariant submanifold of an l.c.k-space form \(M^{2n}(H) \). Then by using (1.4), (2.2) and (2.3) we find that the equations (2.11) and (2.13) of Gauss and Ricci reduce to respectively

(2.14) \[4R_{kjih} = h(g_k h_i g_j - g_k i h_j) + 3(P_k h_i g_j - P_i h_k g_j + g_k h P_j i) - 4(h_k h_j h_i x - h_i x h_k h_j), \]
(2.15) \[4R_{kjyx} = h(f_k x f_j y - f_k y f_j x) - \tilde{P}_{kx} f_j y + \tilde{P}_{ky} f_j x - f_k x \tilde{P}_{jy} + f_k y \tilde{P}_{jx} - 4(h_k x h_j x - h_j x h_k x) + 2 \tilde{P}_{kj} f_{yx}, \]

where we have put

(2.16) \[P_{ji} = P_{ju} B_{j}^{iu}, \quad \tilde{P}_{jx} = \tilde{P}_{ju} B_{j}^{ux}, \quad \tilde{P}_{kj} = \tilde{P}_{ju} B_{kj}^{zu}. \]

3. Proof of Theorem 1

Let \(N^a \) be an \(n \)-dimensional anti-invariant submanifold of an l.c. k-space form \(M^{2n}(H) \). Then from (2.7), (i) and (iii), we can easily see that

(3.1) \[f^y_x = 0. \]

Suppose that the associated vector field \(\alpha^x \) of the Lee form \(\alpha \) is tangent to \(N^a \), that is, \(\alpha^x = \alpha_y g^{yx} = 0 \). Then, from (2.7), (iv), (2.10), (iii) and (3.1), we have

(3.2) \[V_j f_x^i = \delta_j^x f_x^i \alpha_h - f_{jx} \alpha^i. \]

Applying the operator \(V_k \) to (3.2) and using the Ricci identities, we have

\[-R_{kji} f_x^j + R_{kji} f_x^h = \delta^j_x (V_k f_x^h) \alpha_h - \delta^j_k (V_j f_x^h) \alpha_h + \delta^j_x V_k \alpha_h - \delta^j_k V_j \alpha_h - (V_k f_{jx} - V_j f_{kx}) \alpha^i - f_{jx} V_k \alpha^i + f_{kx} V_j \alpha^i, \]

from which, transvecting with \(f_{1x} \) and using (2.7) and (2.10) with \(\alpha_x = 0 \), we can easily obtain
(3.3) \[R_{kji} = R_{kji}^{\gamma} f_{\gamma} f_{\gamma} + g_{ji}(F_{j} a_{i} + \alpha_{j} a_{i} - ||\alpha||^{2} g_{ii}) \]
\[- g_{ki}(F_{j} a_{i} + \alpha_{j} a_{i} - ||\alpha||^{2} g_{ji}) + g_{ki}(F_{j} a_{i} + \alpha_{j} a_{i}) \]
\[- g_{ji}(F_{k} a_{i} + \alpha_{k} a_{i}). \]

On the other hand, since \(\bar{P}_{kz} = P_{k} f_{z} \), (2.15) implies
\[4R_{kji} f_{z} f_{z} = H(g_{ki} g_{ji} - g_{kl} g_{lj}) - P_{k} g_{ji} + P_{ki} g_{ji} - g_{kl} P_{jl} \]
\[+ g_{ki} P_{ji} - 4(h_{k}^{\gamma} h_{j} h_{z} - h_{k}^{\gamma} h_{h} h_{x}) f_{\gamma} f_{z}, \]
which and (3.3) yield
\[4R_{kji} = (H + 3||\alpha||^{2})(g_{ki} g_{ji} - g_{kl} g_{lj}) \]
\[+ 3(g_{ji}(F_{j} a_{i} + \alpha_{j} a_{i}) - g_{ki}(F_{j} a_{i} + \alpha_{j} a_{i})) \]
\[+ g_{ki}(F_{j} a_{i} + \alpha_{j} a_{i}) - g_{ji}(F_{k} a_{i} + \alpha_{k} a_{i}) \]
\[- 4(h_{k}^{\gamma} h_{j} h_{z} - h_{k}^{\gamma} h_{h} h_{x}) f_{\gamma} f_{z}, \]
because \(P_{ji} = - F_{j} a_{i} - \alpha_{j} a_{i} + \frac{1}{2} ||\alpha||^{2} g_{ji}. \) Hence we have
\[(3.4) \quad R_{kji} = g_{ji} L_{ki} - g_{ki} L_{ji} + g_{kl} L_{ji} - g_{jl} L_{ki} \]
\[- (h_{k}^{\gamma} h_{j} h_{z} - h_{k}^{\gamma} h_{h} h_{x}) f_{\gamma} f_{z}, \]
where \(L_{ji} = - \frac{1}{8}(H + 3||\alpha||^{2}) g_{ji} + \frac{3}{4} (F_{j} a_{i} + \alpha_{j} a_{i}). \)

If the second fundamental tensors commute, then from (3.4), we see that the submanifold \(N^{n} \) is conformally flat, provided that \(n > 3 \), which completes the proof of Theorem 1.

4. Proof of Theorem 2

Let \(N^{n} \) be an \(n \)-dimensional anti-invariant submanifold of an l.c.k-space form \(M^{2n}(H) \). Suppose that the associated vector field \(\alpha x \) of the Lee form \(\alpha \) is normal to \(N^{n} \), that is, \(\alpha x = \alpha g^{ij} = 0 \). Then, from (2.7), (v), (2.10), (iii) and (3.1), we have
\[F_{j} f_{x} = 0, \]
which and the Ricci identities yield
\[R_{kji} f_{x} f_{x}^{\gamma} = R_{k} f_{x} f_{x}^{\gamma}, \]
and consequently
\[(4.1) \quad R_{kji} = R_{kji} f_{x} f_{x}^{\gamma}. \]

On the other hand, since \(\bar{P}_{kz} = P_{k} f_{z} \) and
\[P_{k} = h_{k}^{\gamma} a_{x} + \frac{1}{2} ||\alpha||^{2} g_{kk}, \]
(2.15) and (4.1) imply
or equivalently

\begin{equation}
4R_{kji} = g_{kli}L_{ji} + g_{jli}L_{ki} - g_{kli}L_{ji} - g_{jli}L_{ki} - 4(h_j^k h_{xh} - h_j^k h_{kh} f_{j} f_{x}^i).
\end{equation}

If the second fundamental tensors commute, then (4.2) gives that the submanifold \(N^m \) is conformally flat, provided that \(n \geq 3 \). Thus we have Theorem 2.

5. Proof of Theorem 3

Let \(N^m \) be an \(m \)-dimensional anti-invariant submanifold of an l.c. \(k \)-space form \(M^{2n}(H) \). Suppose that the submanifold \(N^m \) is totally umbilical, that is

\[h_{ji}^x = h^x g_{ji}, \quad h^x = \frac{1}{m} g_{ji} h_{ji}^x. \]

Then the equation (2.14) of Gauss implies

\[4R_{kji} = g_{kli}L_{ji} + g_{jli}L_{ki} - g_{kli}L_{ji} - g_{jli}L_{ki}, \]

where \(L_{ji} = (2h^x h_x - \frac{1}{2} H) g_{ji} + 3P_{ji} \). Hence \(N^m \) is conformally flat, provided \(m \geq 3 \), which completes the proof of Theorem 3.

References