QUOTIENT ADDITIVE PROPERTIES IN TOPOLOGICAL SPACES

by Norman Levine

1. Introduction

Suppose that \(R \) is an equivalence relation on a space \(X \) and \([x]\) and \(X/R \) are compact for each \(x \) in \(X \). If the projection map \(\rho : X \to X/R \) is closed, then \(X \) is compact. See theorem 4.2.

This result is not new. This paper is concerned with the more general question: If \(R \) is an equivalence relation on a space \(X \) and if \(P \) is a topological property, does \(X \) have property \(P \) when \(X/R \) and \([x]\) have property \(P \) for each \(x \) in \(X \)?

We will call \(P \) a quotient additive property when the answer is in the affirmative.

The following properties are shown to be quotient additive: indiscreteness, discreteness, \(T_0 \), \(T_1 \), connectedness, total disconnectedness and singleton path components.

The following properties fail to be quotient additive even when \(\rho : X \to X/R \) is an open map: Lindelof, countable compactness, extremally disconnected and cofinite.

The following properties fail to be quotient additive even when \(\rho : X \to X/R \) is both open and closed: paracompact, metacompact, Hausdorff, regular and normal.

The following properties fail to be quotient additive even when \(\rho : X \to X/R \) is closed: second axiom, separable, metrizable and path connected.

If \(\rho : X \to X/R \) is closed, the following properties are shown to be quotient additive: Lindelof, countably compactness and (if \(X \) is first axiom) sequential compactness.

In section 5, \(X \times Y \) is shown to be a fixed point space if \(X \) is a \(T_1 \) fixed point space and \(Y \) is strongly separable (see definition 5.1).

2. General properties

We begin with
Theorem 2.1. If X/R and $[x]$ are indiscrete for each x in X, then X is indiscrete.

Proof. Suppose that $O \neq O = X$ and O is open in X. Then for each x in X, $[x] \subseteq O$ or $[x] \cap O = \emptyset$ since $[x]$ is indiscrete. Let $O^* = \{[x] : [x] \subseteq O\}$. Then $O = O^* = X/R$ and O^* is open in X/R, a contradiction.

Theorem 2.2. Let X/R be discrete and let $[x]$ be discrete for each x in X. Then X is discrete.

Proof. $\{x\}$ is open in $[x]$ and $[x]$ is open in X since $[[x]]$ is open in X/R. Thus $\{x\}$ is open in X.

Theorem 2.3. Let X/R be a T_0-space and let $[x]$ be a T_0-space for each x in X. Then X is a T_0-space.

Proof. Let $x \neq y$. Case 1. $[x] \neq [y]$. Then we can assume that there exists an open set O^* in X/R such that $[x] \in O^*$ and $[y] \notin O^*$. Then $x \in p^{-1}[O^*]$ and $y \notin p^{-1}[O^*]$. Case 2. $[x] = [y]$. Then there exists an open set O in X such that $x \in O \cap [x]$ and $y \notin O \cap [x]$. Then $x \in O$ and $y \notin O$.

Theorem 2.4. Let X/R and $[x]$ be T_1-spaces for each x in X. Then X is a T_1-space.

Proof. Modify theorem 2.2.

We note that neither T_2 nor T_3 nor T_4 nor T_5 may be substituted for T_1 in theorem 2.4 (see example 3.9).

Theorem 2.5. Let X/R and $[x]$ be connected for each x in X. Then X is connected.

Proof. Suppose that $X = O \cup V$ where O and V are nonempty disjoint sets in X. Then $x \in O$ implies that $[x] \subseteq O$ and $y \in V$ implies that $[y] \subseteq V$. Let $O^* = \{[x] : x \in O\}$ and $V^* = \{[y] : y \in V\}$. Then $X/R = O^* \cup V^*$ and O^* and V^* are disjoint nonempty open sets in X/R, a contradiction.

Theorem 2.6. Let X/R and $[x]$ be totally disconnected for each x in X. Then X is totally disconnected.

Proof. Let $A \subseteq X$ and suppose that A has more than one point. Case 1. $A \subseteq [x]$ for some x in X. Then A is disconnected since $[x]$ is totally disconnected. Case 2. $A \subseteq [x]$ for no x in X. Then $p[A]$ contains more than
one point in X/R and hence is disconnected. It follows then that A is disconnected.

THEOREM 2.7. Let X/R and $[x]$ have singleton path components for each x in X. Then X has singleton path components.

PROOF. Let $f : [0, 1] \rightarrow X$ be continuous. We will show that f is a constant. Now $p \circ f : [0, 1] \rightarrow X/R$ is a constant and hence $f([0, 1]) \subseteq [x]$ for some x in X. Since $[x]$ has singleton path components, f is a constant.

3. Some examples

The next two lemmas will be useful for counterexample purposes.

LEMMA 3.1. Let $W = X \times Y$ and let $W/R = \{A_x : x \in X\}$ where $A_x = \{x\} \times Y$. Then W/R is homeomorphic to X and A_x is homeomorphic to Y for each x in X.

PROOF. Let $p : W \rightarrow X$ via $p((x, y)) = x$ and let $q : W \rightarrow W/R$ via $q((x, y)) = A_x$. Let $h : W/R \rightarrow X$ via $h(A_x) = x$. Then h is clearly bijective and $h \circ q = p$. Since q and p are quotient maps, h is a homeomorphism.

That A_x is homeomorphic to Y is well known.

LEMMA 3.2. Let $X = I \times I$ where $I = [0, 1]$ and let X have the dictionary order topology. Let $X/R = \{A_x : x \in I\}$ where $A_x = \{x\} \times I$. Then A_x is homeomorphic to I for each x in X and X/R is homeomorphic to I.

PROOF. Let $p : X \rightarrow I$ by $p(x, y) = x$. p is clearly continuous and onto, and since X is compact and I is hausdorff, $p : X \rightarrow I$ is a closed map and hence a quotient map. Let $q : X \rightarrow X/R$ by $q(x, y) = A_x$. Since X/R is given the quotient topology, $q : X \rightarrow X/R$ is a quotient map. Let $h : X/R \rightarrow I$ by $h(A_x) = x$. As in lemma 3.1, h is a homeomorphism.

DEFINITION 3.3. A property p will be termed *finitely nonproductive* if the product of two spaces with property p need not have property p.

THEOREM 3.4. Let p be a finitely nonproductive property. If X/R and $[x]$ have property p for each x in X, then X need not have property p even if $p : X \rightarrow X/R$ is open.

PROOF. Use lemma 3.1.

COROLLARY 3.5. Let p be any one of the following properties: Lindelof, count-
ably compact, paracompact, extremally disconnected, normal or cofinite. If X/R and $[x]$ have property p for each x in X, then X need not have property p even if $p : X \to X/R$ is open.

PROOF. All of the above properties are finitely nonproductive.

COROLLARY 3.6. Let $X, X/R$ and $[x]$ be as in lemma 3.2. Then X/R and $[x]$ are separable, second axiom, metrizable and path connected. X has none of these properties and $p : X \to X/R$ is closed.

EXAMPLE 3.7. Let $X=\{x : 0 \leq x < 1$ or $1 < x < 2$ and x is rational$\}$. Let $Y=\{0, 1\}$ and let $f : X \to Y$ as follows: $f(x)=x$ if $0 \leq x < 1$ $f(x)=x-1$ if $1 < x < 2$. Let X have the usual topology and let Y have the quotient topology. For each y in Y, $f^{-1}[y]$ is a singleton set or a doubleton set and hence is compact, locally compact, locally connected and sequentially compact. Y also has all of these properties. X has none of these properties.

EXAMPLE 3.8. Let $X=\{a, 1, 2, \ldots, n, \ldots \}$ and let a subset of X be open iff it is empty or contains a. Let R be the equivalence relation whose equivalence classes are $[a]=[a]$ and $[1]=[1,2,\ldots,n,\ldots]$. Now $[a]$ and $[1]$ are paracompact and metacompact. X/R is a two point space and hence is metacompact and every open cover has a locally finite open refinement. But $\{[a, x] : x \in X\}$ is an open cover of X with no refinement which is locally finite or point finite. Note that $p : X/R$ is both open and closed.

EXAMPLE 3.9. Let $X=\{a, b, 1, 2, 3, \ldots, n, \ldots \}$ and let a subset A of X be open iff $A \cap [a, b]=\emptyset$ or $A \cap [a, b]=\emptyset$ and $\mathcal{C}A$ is finite, \mathcal{C} denoting the complement operator. Let $[a]=[a, b]$ and $[n]=[n]$ for $n=1,2,\ldots$. Then X/R is homeomorphic to $\{0, 1, 1/2, \ldots, 1/n, \ldots \}$ with the usual topology and $p : X \to X/R$ is both open and closed and X/R and $[x]$ are T_2, T_3, T_4 and T_5. X has none of these properties.

4. $p : X \to X/R$ closed

When $p : X \to X/R$ is a closed map, certain covering properties are well behaved.

We begin with a well known property of closed maps.

LEMMA 4.1. Let $f : X \to Y$ be a closed map and let $f^{-1}[y] \subseteq O$, O being an open set in X. Then there exists an open set U in Y such that $y \in U$ and $f^{-1}[U] \subseteq O$.
PROOF. Let \(U = E^f[O] \).

THEOREM 4.2. Let \(p : X \to X/R \) be closed and let \(X/R \) and \([x]\) be compact for each \(x \) in \(X \). Then \(X \) is compact.

PROOF. See [2], theorem 5.3, page 236 or modify the proof of the next theorem.

THEOREM 4.3. If \(p : X \to X/R \) is a closed map and if \(X/R \) and \([x]\) are Lindelöf for each \(x \) in \(X \), then \(X \) is Lindelöf.

PROOF. Let \(X = \{O_\alpha : \alpha \in \Lambda \} \) where \(O_\alpha \) is open in \(X \). Since \([x]\) is a Lindelöf space, there exists a countable set \(\Lambda([x]) \subseteq \Lambda \) such that \(p^{-1}([x]) = [x] \subseteq \bigcup \{O_\alpha : \alpha \in \Lambda([x])\} \). By lemma 4.2, there exists an open set \(U([x]) \) in \(X/R \) such that \([x] \subseteq U([x]) \) and \(p^{-1}[U([x])] \subseteq \bigcup \{O_\alpha : \alpha \in \Lambda([x])\} \). Since \(X/R \) is Lindelöf, \(X/R = \bigcup \{U([x]) : i \geq 1\} \) and thus \(X = \bigcup \{O_\alpha : \alpha \in \bigcup \{\Lambda([x]) \} : i \geq 1\} \).

THEOREM 4.4. If \(p : X \to X/R \) is a closed map and if \(X/R \) and \([x]\) are countably compact for each \(x \) in \(X \), then \(X \) is countably compact.

PROOF. Let \(\{E_n : n \geq 1\} \) be a sequence of closed sets with the finite intersection property. We may assume that \(E_n \supseteq E_{n+1} \) for all \(n \). Now \(\{p[E_n] : n \geq 1\} \) is a sequence of closed sets in \(X/R \) with the finite intersection property. Since \(X/R \) is countably compact, there exists a \([x]\) in \(X/R \) such that \([x] \subseteq \bigcap \{p[E_n] : n \geq 1\} \). Then \(\{[x] \cap E_n : n \geq 1\} \) is a sequence of sets closed in \([x]\) with the finite intersection property and since \([x]\) is countably compact, \(\bigcap \{[x] \cap E_n : n \geq 1\} \neq \emptyset \). Thus \(\bigcap \{E_n : n \geq 1\} \neq \emptyset \) and \(X \) is countably compact.

COROLLARY 4.5. If \(p : X \to X/R \) is closed and if \(X/R \) and \([x]\) are sequentially compact for each \(x \) in \(X \) and if \(X \) is a first axiom space, then \(X \) is a first axiom space.

PROOF. \(X/R \) and \([x]\) are countably compact for each \(x \) in \(X \). Then \(X \) is countably compact by theorem 4.4 and hence \(X \) is sequentially compact since first axiom is assumed.

5. A fixed point theorem

We first note that \(X \times Y \) need not be a fixed point space when \(X \) and \(Y \) are fixed point spaces. See [1].

Using some of the earlier ideas, we will give a sufficient condition for
X \times Y to be a fixed point space.

DEFINITION 5.1. A space X will be called strongly separable iff there exists a point x^* in X such that $X = c(\{x^*\})$ and $x \neq x^*$ implies that $\{x\}$ is closed. c denotes the closure operator.

EXAMPLE 5.2. Let X be a set and $x^* \in X$. Let $\mathcal{F}_1 = \{0 \subseteq X: 0 = O \text{ or } x^* \not\in 0\}$. Let $\mathcal{F}_2 = \{0 \subseteq X: 0 = O \text{ or } x^* \not\in 0 \text{ and } \emptyset \neq 0 \text{ is finite}\}$. Let \mathcal{F}_3 be any topology on X for which $\mathcal{F}_2 \subseteq \mathcal{F}_3 \subseteq \mathcal{F}_1$. Then (X, \mathcal{F}_3) is strongly separable.

LEMMA 5.3. Let X be a strongly separable space with distinguished point x^*. Then X is a fixed point space.

PROOF. Let $f: X \to X$ be continuous. If $f(x^*) = x^*$, we are done. So assume that $f(x^*) = y \neq x^*$. Then $f(y) \in f(c(\{x^*\})) \subseteq c(f(\{x^*\})) = c(\{y\}) = \{y\}$. Thus $f(y) = y$.

LEMMA 5.4. Let X be a space and $\{A_\alpha : \alpha \in \Delta\}$ a partition of X. Suppose further that for each $\alpha \in \Delta$, there is a point $x_\alpha \in X$ such that $A_\alpha = c(\{x_\alpha\})$. If $f: X \to Y$ is continuous and $\alpha \in \Delta$, there exists a $\beta \in \Delta$ such that $f[A_\alpha] \subseteq A_\beta$.

PROOF. Let $f(x_\alpha) \in A_\beta$. Then $f[A_\alpha] = f[c(\{x_\alpha\})] \subseteq c(f[\{x_\alpha\}]) \subseteq A_\beta = A_\beta$.

THEOREM 5.5. Let X be a T_1-fixed point space and let Y be a strongly separable space with distinguished point y^*. Then $X \times Y$ is a fixed point space.

PROOF. Let R be the equivalence relation induced by the partition $\{(x) \times Y : x \in X\}$. Note that $(x) \times Y = c((x, y^*))$. Now let $f: X \times Y \to X \times Y$ be continuous and let $f/R: (X \times Y)/R \to (X \times Y)/R$ be the map induced by lemma 5.4. f/R is continuous. By lemma 3.1, $(X \times Y)/R$ is homeomorphic to X and hence is a fixed point space. There exists then an x in X such that $f/R([x] \times Y) = [x] \times Y$. Then $f([x] \times Y: [x] \times Y \to [x] \times Y$ and since $[x] \times Y$ is a fixed point space, $f(x, y) = (x, y)$ for some y in Y.

The Ohio state University
Columbus, Ohio 43210
U.S.A.

REFERENCES
